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Abstract

Deep dyslexia is an acquired reading disorder marked by the occurrence of semantic errors (e.g., reading RIVER as
“ocean”). In addition, patients exhibit a number of other symptoms, including visual and morphological effects in
their errors, a part-of-speech effect, and an advantage for concrete over abstract words. Deep dyslexia poses a distinct
challenge for cognitive neuropsychology because there is little understanding of why such a variety of symptoms
should co-occur in virtually all known patients. Hinton and Shallice (1991) replicated the co-occurrence of visual and
semantic errorshby lesioning arecurrent connectionist network trained to map from orthography to semantics. Whilethe
success of their simulations is encouraging, thereis little understanding of what underlying principles are responsible
for them. In this paper we evaluate and, where possible, improve on the most important design decisions made by
Hinton and Shallice, relating to the task, the network architecture, the training procedure, and the testing procedure.
We identify four properties of networks that underly their ability to reproduce the deep dyslexic symptom-complex:
distributed orthographic and semantic representations, gradient descent learning, attractors for word meanings, and
greater richness of concrete vs. abstract semantics. Thefirst three of these are general connectionist principles and the
last is based on earlier theorizing. Taken together, the results demonstrate the usefulness of a connectionist approach
to understanding deep dyslexiain particular, and the viability of connectionist neuropsychology in general.
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I ntroduction

Despite its familiarity as a concept in cognitive neuropsychology, deep dyslexia remains controversial. It was first
suggested as a symptom-complex by Marshall and Newcombe (1973), who described two patients, GR and KU. Both
made semantic errors in attempting to read aloud and also made visual and derivational errors. Coltheart (1980a)
was able to add another 15 cases. Kremin (1982) added another eight and over ten more are referred to by Coltheart,
Patterson, and Marshall (1987).

Beginning with the semantic error, Coltheart (1980a) also extended the list of common propertiesto 12 (examples
of errors are from DE, Patterson & Marcel, 1977):

1. Semantic errors (e.g., BLOWING ="“wind”, VIEW =" scen€”, NIGHT =" sleep”, GONE ="lost");

2. Visud errors (e.g., WHILE =-“white”, SCANDAL =-"sandals’, POLITE =" politics’, BADGE =" bandage”);

3. Function-word substitutions (e.g., was="and”, ME ="“my”, OFF ="“from”, THEY =-"the");

4. Derivational errors (e.g., CLASSIFY =" class’, FACT =“facts’, MARRIAGE =-"“married”, BUY =-"bought”);

5. Non-lexical derivation of phonology from print is impossible (e.g., pronouncing nonwords, judging if two
nonwords rhyme);

6. Lexical derivation of phonology from print isimpaired (e.g., judging if two words rhyme);

7. Words with low imageability/concreteness (e.g., JUSTICE) are harder to read than words with high imageabil-
ity/concreteness (e.g., TABLE);

8. Verbs are harder than adjectives which are harder than nounsin reading aloud;
9. Functions words are more difficult than content words in reading aloud;

10. Writing isimpaired (spontaneous or to dictation);

11. Auditory-verbal short-term memory isimpaired;

12. Whether a word can be read at al depends on its sentence context (e.g., FLY asanoun is easier than FLY as a
verb).

Given the uniformity of the patients’ symptoms, Coltheart characterized the symptom-complex as a syndrome.

In the conclusion of their review article, “Deep Dyslexia since 1980,” Coltheart, Patterson, and Marshall (1987)
argue that deep dyslexia presents cognitive neuropsychology with a major challenge. They raise two main issues
specific to the domain of reading. First, they argue that standard “ box-and-arrow” information-processing accounts of
deep dyslexia(e.g., Morton & Patterson, 1980) provide no explanation for the observed combination of symptoms. If
a patient makes semantic errors in reading aloud, why are many other types of behavior virtually always observed?
Second, they point out that the standard explanationsfor semantic errors and for effects of abstractnessinvolve different
impairments along the semantic route.

The loss of semantic information for abstract words that explained visua errors in oral reading cannot
readily explain semantic errorsin oral reading, since semantic errorstypically occur on moderately concrete
words . . .. The deficit in the semantic routine that gives a pretty account of semantic errorsis, rather, an
abnormal sloppiness in the procedure of addressing a phonological output code from a set of semantic
features. . .. Must we now postul ate several different semantic-routine impairmentsin deep dyslexia, and
if so, why do we not observe patients who have one but not the other: in particular, patients who make
semantic errors but do not have difficulty with abstract words? (Coltheart et al., 1987, pp. 421-422)

Recently, Hinton and Shallice (1991) have put forward a connectionist approach to deep dyslexia that addresses
the first of the above points. They reproduced the co-occurrence of semantic, visual, and mixed visual -and-semantic
errors by lesioning a connectionist network that develops attractors for word meanings. While the success of their
simulationsis encouraging, thereislittle understanding of what underlying principles are responsible for them. In this
paper, we evaluate and, where possible, improve on the most important design decisions made by Hinton and Shallice.
First, we demonstrate the robustness of the account by examining network architectures different from the original
model. We also improve on the rather arbitrary way that the model realized an explicit response by extending it to
generate phonological output from semantics. Next, we evaluate the significance of the particular learning procedure
used to train the original model by re-implementing it in a more plausible connectionist formalism. Finally, we



investigate whether the remaining characteristics of deep dyslexia—in particular, Coltheart, Patterson, and Marshall’s
third issue relating to effects of abstractness—can be explained by the same account proposed for the co-occurrence of
error types. Theremainder of this section presentsabrief discussion of additional aspects of deep dyslexia, motivations
for a connectionist account, a summary and evaluation of the Hinton and Shallice results, and a general overview of
the remainder of the paper.

Deep Dyslexia

One problematic aspect of characterizing deep dyslexiaas asyndromeisthat, in fact, not all of the above 12 properties
arealways observed when an acquired dysl exic patient makes semantic errorsin reading. Thus, patient AR (Warrington
& Shallice, 1979) did not show the content word effects (7 and 9), and had relatively intact writing and auditory short-
term memory (10 and 11). Three other patients have been described who make semantic errors in reading aloud
(and do so aso when any other speech responses are required) and yet make few if any visua errors (Caramazza
& Hillis, 1990; Hillis, Rapp, Romani, & Caramazza, 1990).! The lack of complete consistency across patients has
led to criticisms of the attempt to characterize the symptom-complex as directly reflecting an impairment to some
specific processing component. Some of these arguments are specific to deep dyslexia. For example, Shallice and
Warrington (1980) held that deep dyslexia was not a “pure syndrome.” Others, though, have made more genera
critiques. Morton and Patterson (1980) and Caramazza (1984, 1986) denied the theoretical utility of generalizing over
patients for extrapolation to normal function, and Shallice (1988a) more specifically claimed that error patterns did not
provide an appropriate basis for this purpose.

Despite these objections to the theoretical utility of the deep dyslexia symptom-complex, Coltheart et al. (1987)
stress that work since 1980 reinforces the virtually complete uniformity of symptom pattern found across a large
number of patients. This means that to dismiss deep dyslexia as theoretically irrelevant would be at least as dangerous
asto accept it uncritically as the manifestation of some specificimpairment. For the present wewill leave consideration
of these methodological criticisms until the General Discussion and will provisionally assume that deep dyslexiais a
valid theoretical concept.

Many other properties of the reading of individual deep dyslexic patients have been recorded. In this paper wewill
be particularly concerned with four:

1. Additional types of reading errors. Mixed visua-and-semantic (e.g., SHIRT ="skirt”) were recorded in all of
the patients reviewed by Coltheart (1980a) on whom there is adequate data; in KF (Shallice & McGill, 1978)
and PS (Shallice & Coughlan, 1980) they were also shown to occur at a higher rate than one would expect if
they were all arising as visual errors or as semantic errors independently. Another error type, observed even
earlier by Marshall and Newcombe (1966), isthat of visual-then-semantic errors (e.g., SYMPATHY =-" orchestra’,
presumably via symphony, by GR), described in eight of the patients reviewed by Coltheart (1980a).

2. Influences of semantic variables on visual errors. Ingeneral, the abstract/concrete dimension does not just relate
to the issue of how successfully different types of words are read. The stimuli producing visual errors tend to
be more abstract than the responses, and more abstract than the stimuli producing other types of responses (see,
e.g., Shallice & Warrington, 1980).

3. Confidence in errors. The confidence with which errors are produced has been studied in three patients. PW
and DE (Patterson, 1978) were much more likely to be sure that they were correct for visual errors than for
semantic errors, but GR gave as high confidence ratings both for visual errors and for semantic errors as for
correct responses (Barry & Richardson, 1988).

4. Lexical decision. Deep dyslexic patients can often distinguish words from orthographically regular nonwords,
even when they are quite poor at explicitly reading the words (Patterson, 1979). Lexical decision was “surpris-
ingly good” for nine of the 11 cases listed by Coltheart (1980a) for which there was data.

Turning to theoretical accounts of the symptom-complex, we will follow Marshall and Newcombe (1973), and
many others, by presuming that phonological reading procedures are grossly impaired in these patients, and that this

10ne could argue that two of these patients at least are hardly “acquired dyslexics’ since their problem is held to be at the phonological
output lexicon. This though, presupposes that one can make a clear distinction between reading impairments and other difficulties. Yet, while it
remains generally accepted that non-semantic phonological reading procedures are grossly impaired in deep dyslexic patients (see, e.g., Marshall &
Newcombe, 1973), it has been argued that there are additional deficits in the semantic reading route, and that these can differ in their location, with
some patients even being output deep dyslexics (Friedman & Perlman, 1982; Shallice & Warrington, 1980). Thus, the “clear distinction” between
reading and non-reading difficulties is absent from the literature.



can account for characteristics 5, 6, and presumably 11 (see discussions in Coltheart, 1980a, 1980c; Coltheart et al.,
1987). However, if it is held that the complete cluster of properties have a common functional origin, what can it be?
The most prosaic possibility isthat the syndrome arises from a set of functionally independent deficits which co-occur
for anatomical reasons (e.g., Morton & Patterson, 1980; Shallice, 1988a; Shallice & Warrington, 1980). If, however,
the impairments are only specified in terms of damage to hypothetical subcomponents or transmission routes, many
guestions remain to be answered. Why do visual and derivational errors so often co-occur with semantic ones? Why do
mixed visual-and-semantic and visual-then-semantic errors occur? If the general advantage for concrete words results
from impaired access to abstract semantics per se, why has only one patient (CAV, Warrington, 1981) been observed
with superior reading performance on abstract words? How does one account for the effects of concreteness on visual
errors? Ad hoc explanations have been given for some of these points (see Morton & Patterson, 1980; Shallice &
Warrington, 1980) but nothing resembling a well-devel oped theory along these lines exists.

An interesting version of the “anatomical coincidence” explanation is the claim that deep dyslexic reading reflects
reading by the right hemisphere (Coltheart, 1980b, 1983; Saffran, Bogyo, Schwartz, & Marin, 1980). The attraction
of this hypothesis is the similarities that have been demonstrated between reading in deep dyslexia and in patients
reading with an isolated right hemisphere (e.g., Patterson, Vargha-Khadem, & Polkey, 1989; Zaidel & Peters, 1981).
However, these anal ogies have been criticized (see, e.g., Patterson & Besner, 1984a; Shallice, 1988a) and at least one
patient has been described with many deep dyslexic characteristics whose reading was abolished after a second left
hemisphere stroke (Roeltgen, 1987). Overall, while the theory is based on empirical analogues for certain aspects of
deep dyslexia (e.g., the nature of right hemisphere semantics by which it might produce the symptom-complex), it is
principally an attempt to localize rather than to provide amechanistic account. Since no mechanistic account exists for
many aspects of any other neuropsychological syndrome except for neglect dyslexia (Mozer & Behrmann, 1990), this
is hardly a strong criticism of the theory from present-day perspectives. However, an explanation oriented towards
this more complex goal remains a major target for understanding deep dyslexia.

M otivation of a Connectionist Account

Connectionist modeling offers a promising approach to producing amechanistic account of deep dyslexia. Connection-
ist networksare becoming increasingly influential in anumber of areas of psychology as amethodology for devel oping
computational models of cognitive processes. In contrast to conventional programs that compute by the sequential
application of stored commands, these networks compute viathe massively parallel cooperative and competitive inter-
actions of alarge number of simple neuron-like processing units. Networks of thisform have been applied to problems
in awide range of cognitive domains, such as high-level vision and attention, learning and memory, language, speech
recognition and production, and sequential reasoning (see McClelland, Rumelhart, & the PDP research group 1986;
Quinlan, 1991; and recent Cognitive Science Society conference proceedings).

In addition to their usefulness in modeling normal cognitive functioning, a number of genera characteristics of
connectionist networks suggest that they may be particularly well-suited for modeling neuropsychological phenomena
(Allport, 1985). Modular theories of cognitive processes can be expressed naturally by dedicating separate groups of
unitsto represent different typesof information. Inthisway the approach can be viewed asan elaboration of, rather than
alternative to, more traditional “box-and-arrow” theorizing within cognitive neuropsychology (cf. Seidenberg, 1988).
Also, partial lesions of neurological areas and pathways can be modeled in a straightforward, relatively atheoretical
manner by removing a proportion of unitsin a group and/or connections between groups. In contrast, simulations of
neuropsychological findings within more traditional computational formalisms (e.g., Kosslyn, Flynn, Amsterdam, &
Wang, 1990) must typically make more specific assumptions about how damage affects particular components of the
system. Furthermore, since knowledge and processing in aconnectionist network is distributed across a large number
of units and connections, performance degrades gracefully under partial damage (Hinton & Sejnowski, 1986). This
means that arange of intermediate states between perfect performance and total impairment can occur. Together with
the richness of the computational formalism, this allows behavior more detailed than the simple presence or absence
of abilitiesto be investigated (Patterson, 1990).

A number of authors have attempted to explain patient behavior based on intuitions about how connectionist
networks or other cascaded systems (McClelland, 1979) would behave under damage, without actually carrying out
thesimulations (e.g., Miller & Ellis, 1987; Riddoch & Humphreys, 1987; Shallice & McGill, 1978; Stemberger, 1985).
However, the highly distributed and dynamical nature of these networks makes such unverified predictions somewhat
suspect. More recently, a few researchers have begun to explore the correspondence of the behavior of damaged
connectionist networks and patient behavior, primarily in the domain of acquired dyslexia. Mozer and Behrmann



(1990) reproduced aspects of neglect dyslexiain apre-existing connectionist model of word recognition (Mozer, 1990)
by disrupting its attentional mechanism. Patterson, Seidenberg, and McClelland (1990) attempted to model a form
of surface dyslexia by damaging a network model of word pronunciation that had been previously demonstrated to
account for a wide range of effects in normal reading (Seidenberg & McClelland, 1989). In addition, a number of
other investigations are underway in other domains (e.g., Burton, Young, Bruce, Johnston, & Ellis, 1991; Cohen &
Servan-Schreiber, 1992; Dehaene & Changeux, 1991; Farah & McClelland, 1991; Levine & Prueitt, 1989; Plaut,
1992; Plaut & Shallice, in press). While the successes of these initial demonstrations are certainly limited, they are
sufficiently encouraging to warrant an attempt to understand in a more general way the strengths and limitations of
connectionist neuropsychology.

Much of the initial motivation for pursuing a connectionist account of deep dyslexia comes out of preliminary
work by Hinton and Sejnowski (1986) on the effects of damage in networks. They were not primarily concerned with
modeling deep dyslexia, but rather with investigating how distributed representations can mediate in mapping between
arbitrarily related domains (Hinton, McClelland, & Rumelhart, 1986). They trained a network with the Boltzmann
Machine learning procedure (Ackley, Hinton, & Sejnowski, 1985) to active a specific subset of 30 semantic features
via 20 intermediate units when presented with the graphemes of each of 20 three-letter words. The undamaged network
performed the task almost perfectly, but when single intermediate units were removed, 1.4% of the responses of the
network were incorrect. Interestingly, 59% of these incorrect responses were the exact semantics of an alternative
word, and theseword errorswere more semantically and visually similar to the correct word than would be expected by
chance. Although the demonstration was highly simplified, it showed that damage to a network that maps orthography
to semantics can produce a pattern of errors with some similarity to that made by deep dyslexic patients.

A Preliminary Connectionist M odel of Deep Dyslexia

Based on Hinton and Sejnowski’s initial work, Hinton and Shallice (1991, hereafter H& S) undertook to model the
error pattern of deep dyslexia more thoroughly. Developing the model involved making four sets of design decisions
that apply to the devel opment of any connectionist simulation:

e Thetask: What input/output pairsis the network trained on and how are they represented as patterns of activity
over groups of input and output units?

o Thenetwork architecture: What type of unit isused, how are the units organized into groups, and in what manner
are the groups connected?

e The training procedure: How are examples presented to the network, what procedure is used to adjust the
weights to accomplish the task, and what is the criterion for halting training?

e Thetesting procedure: How is the performance of the network eval uated—specifically, how are lesions carried
out and how isthe behavior of the damaged network interpreted in terms of overt responses that can be compared
with those of patients?

Thefollowing four subsections describe the characteristics of the model in terms of each of these issues. The adequacy
and limitations of these decisions are then discussed and serve to motivate the simulations presented in this paper.

The Task

H& S defined aversion of the task of mapping orthography to semantics that is somewhat more sophisticated than
that used by Hinton and Sejnowski, although still far from realistic. Orthography was represented in terms of groups of
position-specific letter units (McClelland & Rumelhart, 1981). In order to keep the task simple, 40 three- or four-letter
words were chosen with restrictions on what letters could occur in each position, resulting in a total of 28 possible
graphemes (see Table 1).

Rather than assign to each word a completely arbitrary semantics, H& S designed a set of 68 semantic features
intended to capture intuitive semantic distinctions (see Table 2). On average, about 15 of the 68 features are present in
the semantic representation of aword. The words were chosen to fall within five concrete semantic categories: indoor
objects, animals, body parts, foods, and outdoor objects. The assignment of semantic features to words has the property
that words in the same category tend to be more similar (i.e. share more features) than words in different categories
(see Figure 1). However, H& S did not directly demonstrate that their semantic categories faithfully reflect the actual
semantic similarity among words. Figure 1 conveys some sense of the similarity within and between categories, but



Table 1: The words used by Hinton and Shallice.

(a) Letters allowed in each position.

Pos.

Letters

A WNPRE

BCDGHLMNPRT

AEIOU
BCDGKMPRTW

E K

(b) Words in each category.

Indoor Body Outdoor
Objects Animals Parts Foods Objects
BED BUG BACK BUN BOG
CAN CAT BONE HAM DEW
cot cow GUT HOCK DUNE
CcuP DOG HIP LIME LOG
GEM HAWK LEG NUT MUD
MAT PIG LIP POP PARK
MUG RAM PORE PORK ROCK
PAN RAT RIB RUM TOR

Table 2: Semantic features used by Hinton and Shallice.

10
11
12
13
14
15

16
17

18
19

20

max-size-less-foot
max-size-foot-to-two-yards
max-size-greater-two-yards

main-shape-1D
main-shape-2D

cross-section-rectangular
cross-section-circular

has-legs

white

brown

green
color-other-strong
varied-colors
tranparent

dark

hard
soft

Sweet
tastes-strong

moves

21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37

38
39
40
41

42
43
44
45

indoors

in-kitchen
in-bedroom
in-livingroom
on-ground
on-surface
otherwise-supported
in-country
found-woods
found-near-sea
found-near-streams
found-mountains
found-on-farms

part-of-limb
surface-of-body
interior-of-body
above-waist

mammal
wild

fierce
does-fly
does-swim
does-run
living
carnivore

46
47
48
49
50
51

52
53

54
55
56
57
58
59
60
61
62
63

64
65

66

67

68

made-of-metal
made-of-wood
made-of-liquid
made-of-other-nonliving
got-from-plants
got-from-animals

pleasant
unpleasant

man-made
container
for-cooking
for-eating-drinking
for-other
used-alone
for-breakfast
for-lunch-dinner
for-snack

for-drink

particularly-assoc-child
particularly-assoc-adult

used-for-recreation
human

component

Note. Features within ablock were considered “closely related” for the purposes of intercon-
necting semantic units.



BED
CAM
cCaT
Cur
GEM
MAT
MUG
PAM
BUG
CAT
COl
noG
HAWE
PIG
RAM
RAT
BACK
BOME
GUT
HIF
LEG
LIF
FORE
RIB
BUM
HAM
HOCK
LIME
HUT
FOF
FORE
RUM
BOG
DOEL
DUHE
LOG
MUD
FARK
ROCK
TOR

[ N iy 7 [ N Y I P

40

11111111112222222222333333333534444444444555555555560606E666
123456789012345678901 2340678901 2345678901 2345678901 2345678901 2345675

Figure 1: The assignment of semantic features to words used by H& S. A black rectangle indicates that the semantic
representation of the word listed on the |eft contains the feature whose number (from Table 2) islisted at the top.
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Figure 2: The similarity matrix for the semantic representations of words. The size of each square represents the
proximity of the representations of a pair of words, where the largest squares (along the diagonal) represent the closest
possible proximity (1.0) and a blank sguare represents the farthest possible proximity (0.0).

a more direct impression can be obtained from a full display of the similarity (i.e. proximity in semantic space) of
each pair of words, shown in Figure 2. Because the words are ordered by category in the figure, the extent and
uniformity of the similarity within each category isreflected by an 8-by-8 block aong the diagonal of the matrix, while
between-category similarity is reflected in off-diagonal blocks. A number of interesting characteristics are apparent
from the similarity matrix. Words for body parts are quite similar to each other, and quite different from words in
other categories. In contrast, indoor objects are not uniformly similar to each other, and many are quite similar to
foods, particularly those that are used with food (i.e. CuP, CAN, MUG, PAN). Outdoor objects also vary considerably
in their similarities with each other, and are often also similar to animals (which are also found outdoors). However,
the overall strength of the five on-diagonal blocks supports the use of category membership as a general measure of
semantic similarity.

A further requirement of a satisfactory approximation of the task of mapping orthography to semantics that H& S
did not verify for their representations is that the relationship between the visual and semantic representations of a
word is arbitrary. In other words, the visual similarity of two words provides no information about their semantic
similarity, and vice versa. One way to test the independence of visual and semantic similarity is that the probability of
arandomly selected word pair being both visually and semantically similar, m, should be approximately equal to the
product of the independent probabilities of visual similarity, v, and semantic similarity, s. Based on the definitions of
visual and semantic similarity used by H& S and described below, among all possible non-identical word pairs in the
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C 28 grapheme units )

Figure 3: The network used by H& S. Notice that sets of connections are named with the initials of the names of the
source and destination unit groups (e.g., G="I for grapheme-to-intermediate connections).

set, m = .062, v = .36, and s = .18, so vs = .065 is roughly equal to m. Thus, visual and semantic similarity are
approximately independent in the H& S word set.

Even taking these considerations into account, there is no question that the representations used by H& S fail to
reflect the full range of orthographic and semantic structure in word reading. The use of position-specific letter units,
the selection of semantic features, and their assignment to words, were based more on computational than empirical
grounds. In fact, it is not particularly plausible that the semantic representations of a word in the human cognitive
system is based on individua feature units at the level of found-on-farms and used-for-recreation. However, these
representations exhibit the characteristics that are essential for demonstrating the influences of both visual and semantic
similarity on deep dyslexic reading: (a) visually similar words (i.e. with overlapping letters) have similar orthographic
representations, (b) wordswith similar meanings (i.e. in the same category) have similar semantic representations, and
(c) there is no systematic relationship between the orthographic and semantic representations of a word.

The Network

Figure 3 depicts the network used by H& S. The 28 grapheme units were connected to a group of 40 intermediate
units, which in turn were connected to the 68 sememe units. In order to allow the sememe units to interact, H&S
introduced connections at the semantic level in two ways. First, they added direct connections between sememe units,
but rather than include all possible 4624 such connections, they only connected sememe units that represent closely
related features (as defined in Table 2). While these direct connections help the network ensure that sememes are
locally consistent, not all relationships among semantic features can be encoded by pairwise interactions alone. In
order to allow combinations of sememes to directly influence each other, H& S aso introduced a fourth group of 60
clean-up units that receive connections from, and send connections to, the sememe units. This pathway can enforce
more global consistency among semantic features. In order to reduce the total number of connections, only arandom
25% of the possible connections between any two layers were included, resulting in about 3300 connections for the
entire network.

Each unit in the network had areal-valued activity level, or state, ranging between 0 and 1, computed by a smooth,
nonlinear function of the summed input received from other units.

The Training Procedure

The network was trained in the following way. The states of the grapheme units were set to the appropriate
input pattern for a word, and the states of all other units were set to 0.2. The network was then run for seven
iterations in which each unit updated its state once per iteration, generating a pattern of activity over the sememe
units. The network was initialized to have small random weights, so that at the beginning of training the pattern
of semantic activity produced by the word was quite different from its correct semantics. An iterative version of
the back-propagation learning procedure, known as back-propagation through time (Rumelhart, Hinton, & Williams,
19864, 1986b; Williams & Peng, 1990), was used to compute the way that each weight in the network should change
so asto reduce this difference for the last three iterations. These weight changes were calculated for each word in turn,



at which point the accumulated weight changes were carried out and the procedure was repeated. After about 1000
sweeps through the 40 words, when the network was presented with each word, the activity of each sememe unit was
within 0.1 of its correct value for that word, at which point training was considered complete.

The Effectsof Lesions

After training, the intact network produced the correct semantics of each word when presented with its orthography.
The network was then lesioned by either removing a random subset of the unitsin alayer or the connections between
two layers, or by adding random noise to the weights. Under damage, the semantics produced by a word typically
differed somewhat from the exact correct semantics. Yet even though the corrupted semantics would fail the training
criteria, it still might suffice for the purposes of naming. H& S defined two criteria that had to be satisfied in order for
the damaged network to be considered to have made a response:

1. A proximity criterion ensured that the corrupted semantics was sufficiently closeto the correct semantics of some
word. Specifically, the cosine of the angle (i.e. normalized dot product) between the semantic vector produced
by the network and the actual semantic vector of some word (in the 68-dimensional space of sememes) had to
be greater than 0.8.2

2. A gap criterion ensured that no other word matched nearly aswell. Specifically, the proximity to the generated
semantics of the best matching word had to be at least 0.05 larger than that of any other word.

If either of these criteriafailed, the output was interpreted as an omission; otherwise the best matching word was taken
as the response, which either could be the correct word or an error.

In order to compare the behavior of the network under damage with that of patients, H& S systematically lesioned
sets of units or connections over arange of severity. For 10 instances of each lesion type, al 40 words were presented
to the network, and omission, correct, and error responses were accumulated. As an approximation to the standard
error classification used for patients (cf. Morton & Patterson, 1980), an error was defined to be visually similar to the
input word if the two words overlapped in at least oneletter, and semantically similar if the two words belonged to the
same category. Based on these definitions, errors were classified into four types:

o visual (V): responsesthat are visually (but not semantically) similar to the stimulus (e.g., CAT ="cot”").
¢ semantic (S): responses that are semantically (but not visually) similar to the stimulus (e.g., CAT ="dog").

o mixed visual-and-semantic (V+S): responses that are both visually and semantically similar to the stimulus (e.g.,
CAT ="rat").

o other (O): responsesthat are unrelated to the stimulus (e.g., CAT ="“mug”).

Applied to al possible pairs of words, these definitions give rise to the chance rates v, s and m used above to
demonstrate that visual and semantic similarity are approximately independent.

The most important result was that al lesions produced semantic, mixed visual-and-semantic, and visual errors at
rates higher than would be expected by chance (with the sole exception of lesions of the sememe-to-cleanup (S=-C)
connections—the lesion type most resistant to damage). Here, “chance” is determined by comparing the ratio of
each error rate to that of other errors with the predicted ratio, under the assumption that error responses are generated
randomly from the word set. Thisis because a random pattern of responding would match the chance distribution of
errors and not simply the chance rate for a particular error type.

It should be pointed out that mixed visual-and-semantic errors might arise simply from the chance rate of semantic
similarity among visual errors, and the chance rate of visual similarity among semantic errors, rather than reflecting
an additional influence on errors. The expected rate of mixed errors, M, can be calculated from the observed rates

2There are a number of reasonable similarity metrics that could be used for comparing the network’s output with known responses. The
normalized dot product (angle cosine) is particularly appropriate because the summed input to each unit is the dot product of its incoming weights
with the activities of other units. As aresult, two activity patterns that have high proximity (i.e. a normalized dot product near 1.0) will tend to
make similar contributions to the summed input to other units. Furthermore, the normalized dot product is preferable to the more familiar euclidean
distance metric because not all types of difference between two semantic patterns would be equally disruptive to an output system. In particular,
differences in direction (e.g., towards another meaning) are more significant than differences in magnitude (which maintain the relative levels of
unit activity).



of visua errors, V, and semantic errors, S, under the assumption that visual and semantic errors result from two
independent processes (Shallice & McGill, 1978):
S v

S
1—5+ 1—w

M<V

where v, s and m are as defined above. However, for al but one lesion type—removing intermediate-to-sememe
connections—the number of mixed visual-and-semantic errors was greater than would be expected if visua and
semantic similarity were caused independently. Furthermore, the network showed a greater tendency to produce visual
errors with early damage (closer to the graphemes) and semantic errors with later damage (closer to the sememes)
although even damage completely within the semantic clean-up system produced an above-chancerate of visual errors.
Thus, lesions throughout the network resulted in the basic co-occurrence of error types found in deep dyslexia.

H& S also demonstrated that, even when the semantics produced by the system were insufficient to plausibly drive
a response system, enough information was often available to make between- and within-category discriminations.
For instance, removing all of the connections from the sememe to clean-up units (S=-C) reduced explicit correct
performance to 40%. However, of the 60% remaining trials producing an omission, 91.7% of these resulted in
semantics that were closer to the centroid of the correct category than to that of any other category (chance is 20%),
and 87.5% were closer to the semantics of correct word in that category than to that of any other word in the category
(chance is 12.5%). The effect was weaker with earlier damage: removing 30% of the grapheme-to-intermediate
connections (G=-I) produced 35.3% correct performance with 48.3% between-category and 49.0% within-category
discrimination on omission trials.

Finally, a peculiar and interesting effect emerged when the connections from the clean-up to sememe units (C=-S)
were lesioned. The network showed a significant selective preservation of wordsin the foods category (75% correct)
relative to those in other categories (next best, 34% correct).® The effect was quite specific; it did not occur for other
lesions in the network, nor for the same lesion in asecond version of the network trained with different initial random
weights.

Attractors

An important concept in understanding H& S'sresultsis that of an attractor. The sememe unitsin the network change
their states over time in response to a particular orthographic input. The initial pattern of semantic activity generated
by the direct pathway may be quite different from the exact semantics of the word. Interactions among sememe
units, either directly viaintra-sememe connections or indirectly viathe clean-up units, serve to gradually modify and
clean-up the initial pattern into the final, correct pattern. This process can be conceptualized in terms of movement in
the 68-dimensional space of possible semantic representations, in which the state of each sememe unit is represented
along a separate dimension. At any instant in processing a word, the entire pattern of activity over the sememe
units correspond to a single point in semantic space. The exact meanings of familiar words correspond to particular
alternative points in the space. The states of sememe units change over time in such away that the point representing
the current pattern of semantic activity moves to the point representing the nearest familiar meaning. In other words,
the pattern corresponding to each known word meaning becomes an attractor in the space of semantic representations:
patterns for nearby but unfamiliar meanings move towards the exact pattern of the nearest known meaning. The
region in semantic space corresponding to the set of initial patterns that move to a given attractor is called its basin of
attraction. The shapes and positions of the basins depend on the ways that units interact, which in turn depend on the
connection weights. Hence, we speak of a network as developing or building attractors over the course of learning.
H& S offer an intuitive explanation for co-occurrence of visual and semantic influences on errors in terms of the
effects of damagein anetwork that builds attractors in mapping between two arbitrarily related domains. Connectionist
networks have difficulty learning to produce quite different outputs from very similar inputs, yet very often visually
similar words (e.g., CAT and coT) have quite different meanings. One effective way a network can accomplish this
mapping is to construct large basins of attraction around each familiar meaning, such that any initial semantic pattern
within the basin will moveto that meaning (see Figure 4). Visually similar words arethen freeto generatefairly similar
initial semantic patterns as long as they each manage to fall somewhere within their appropriate basin of attraction.
In this way the network learns to shape and position the basins so as to “ pull apart” visually similar words into their
final distinct semantics. Damage to the semantic clean-up distorts these basins, occasionally causing the normal initial
semantic pattern of aword to be captured within the basin of avisually similar word. Essentially, the layout of attractor

3This effect was significant at the 0.01 level and not at the 0.1 level asincorrectly stated in Hinton and Shallice (1991).
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Figure 4: How damage to semantic attractors can cause visua errors. The solid ovals depict the normal basins of
attraction; the dotted one depicts a basin after semantic damage.

basins must be sensitive to both visual and semantic similarity, and so these metrics are reflected in the types of errors
that occur as aresult of damage.

Evaluation of the M odel

The aim of H& S's work was to provide a unified account of the nature and co-occurrence of semantic, visua and
mixed reading errors in deep dyslexia. Most previous explanations of why virtually all patients who make semantic
errors also make visual errors (e.g., Gordon, Goodman-Schulman, & Caramazza, Note 4; Morton & Patterson, 1980)
have had to resort to proposing lesions at multiple locations along the semantic route. Shallice and Warrington (1980)
speculated that an inability to adequately access part of the semantic system might give rise to the occurrence of errors.
However, H& S actually demonstrated that all of these error types arise naturally from single lesions anywhere in a
connectionist network that builds attractors in mapping orthography to semantics. Only the quantitative distribution
of error types varied systematically with lesion location.

There are two main types of criticism leveled against the H& S model. The first has to do with the limited range
of empirical phenomena it addresses. Of the aspects of deep dyslexia which pose problems for theory, only three
were modeled—the very existence of semantic errors in reading aloud, the frequent co-occurrence of visual errors
with semantic errors, and the relatively high rates of occurrence of mixed visual-and-semantic errors. However, an
adequate theory of deep dyslexia would also need to account for a fair number of other aspects of the syndrome.
Certain aspects (5, 6, and 10, as listed in the Introduction) involve difficulties in mapping directly between print and
sound and are covered by the assumption of the gross impairment in the operation of the non-semantic route(s). Two
others, function word substitutions (3) and derivational errors (4), can be interpreted as special cases of semantic or
mixed visual-and-semantic errors, and so can be explained in an analogous fashion (see Funnell, 1987). Another two,
auditory short-term memory impairments (11) and context effects (12), are dismissed by Coltheart et a. (1987) astoo
vague. However, this still leaves the effects of imageability on reading (7), the effects of part-of-speech (8 and 9), and
also a number of the additional effects: the interactions between the abstract/concrete dimension and visual errors,
confidence ratings, lexical decision, and the visual-then-semantic errors. These phenomena will all be considered
directly in this paper. Onefinal effect, the impaired writing, will be addressed in the General Discussion.

The second type of criticism of the H&S model relates to its generality. H& S argue that the co-occurrence of
different error types obtained in deep dyslexia is a natural consequence of lesioning a connectionist network that
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maps orthography to semantics using attractors. However, their conclusions were essentially based on a single type
of network that had many specific features. This is an inevitable consequence of the fact that the design decisions
that went into developing the model reflect a tradeoff between (at least) three types of constraint: (a) empirical data
from cognitive psychology and neuropsychology, (b) principles of what connectionist networks find easy, difficult or
impossible to do, and (c) limitations of the computational resources available for running simulations. While H& S
attempt to motivate and justify many of their choices, it was only an assumption that the specific features of the
resulting model did not significantly contribute to its overall behavior under damage. While it is clearly impossible
to evaluate every possible aspect of the model, a major focus of this paper isto identify which aspects are critical to
reproducing the deep dyslexic error pattern, and which aspects are less central.

Overview

Most attempts to model acquired dyslexia by lesioning connectionist networks (Mozer & Behrmann, 1990; Patterson
et a., 1990) have been based on pre-existing models of word reading in normals (Mozer, 1990; Seidenberg &
McClelland, 1989). These studies have primarily aimed to provide independent validation of the properties of the
normal models that enable them to reproduce phenomena they were not initially designed to address. The work
of H&S is rather different in nature, in that they were less concerned with supporting a specific model of normal
word comprehension, than with investigating the effects of damage in afairly general type of network in the domain
of reading via meaning. To the extent that the behavior of the damaged network mimicked that of deep dyslexic
patients, the principles that underly the network’s behavior may provide insight into the cognitive mechanisms of
reading in normals, and their breakdown in patients. In this way, the relevance of H& S's simulations to cognitive
neuropsychology depends on identifying and eval uating those aspects of the model which are responsible for its ability
to reproduce patient behavior. In this paper, we attempt to provide such an analysis. The three main technical sections
of the paper, concerning the relevance of network architecture, training procedure, and scope of the task domain, are
summarized below.

The Relevance of Network Architecture

H& S provide only ageneral justification for the network architecture they chose. Hidden units are needed because
the problem of mapping orthography to semantics is not linearly separable. Recurrent connections are required to
allow the network to develop semantic attractors, whose existence constitutes the major theoretical claim of the work.
The choices of numbersof intermediate and clean-up units, restrictions on intra-sememe connections, and connectivity
density were an attempt to give the network sufficient flexibility to solve the task and build strong semantic attractors,
while keeping the size of the network manageable. Some aspects of the design, particularly the selective use of intra-
sememe connections, were rather inelegant and ad hoc. A section entitled “ The Relevance of Network Architecture’
describes simulations involving a range of network architectures that attempt to directly evaluate the impact of
architectural distinctions on the pattern of errors produced under damage. The results demonstrate that the qualitative
error pattern after damage is surprisingly insensitive to architectural details, as long as attractors continue to operate
downstream from the lesion.

Following the architectural comparisons, weinvestigate more detail ed aspects of the pattern of correct and impaired
performance shown to varying degrees by all of the networks. These considerations serve both to verify the generality
of the results, and to extend the range of phenomenain deep dyslexia accounted for by the modeling approach.

Generating phonological responses. A serious limitation of H& S's work involves the use of proximity and
gap criteria in determining the response produced by the network under damage. These criteria were intended to
approximate the requirements of a system that would actually generate responses based on semantic activity. H&S
provided evidence that the main qualitative effects obtained do not depend on specific values for these criteria, but
their adequacy as an approximation to an output system wasleft unverified. To thisend, we develop an output network
that generates explicit phonological responses on the basis of semantic activity. When combined with the previously
developed input networks, the resulting complete implementations of the semantic route replicate the co-occurrence
of error types, thereby verifying the generality of the original results based on response criteria. In addition, lesions
to the output network itself also produce the deep dyslexic error pattern, thus providing an account of the similarity
among subvarieties of the syndrome.

Item- and categor y-specific effects. The small size of the H& S word set raises the possibility that many of the
effects arise fromidiosyncratic characteristics of theword set itself, and not to any real systematic rel ationship between
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orthography and semantics. We verify that the effects we have demonstrated are distributed across the entire word
set. We also discuss peculiar selective preservation or impairment of performance for particular categories after some
types of lesions.

Definitions of visual and semantic similarity. H& Sused definitions of visual and semantic similarity, in terms
of letter overlap and category membership, that are analogous to those used for patients. However, these definitions
only approximate the actual similarity structure of the visual and semantic representations of words. We demonstrate
that a distribution of error types occurswhen errors are classified using criteria based on the orthographic and semantic
proximity of words, indicating that the use of the original definitions for visual and semantic similarity does not
significantly bias the results.

Visual-then-semantic errors.  Visual-then-semantic errors are generally assumed to arise from the combined
effects of two separate lesions, producing avisual error followed by a semantic error. We demonstrate that they occur
after singlelesionsin our networks, when the damaged input network failsto completely clean-up avisual error, which
is then misinterpreted as a semantically-related word by the output network.

Effects of lesion severity. Most of our results, as well as those of H& S, are based on averaging the effects
of lesions resulting in moderate correct performance. We investigate the effect of lesion severity on error pattern,
demonstrating higher overall error rates and a higher proportion of unrelated errors with increasing lesion severity.

Error patternsfor individual lesions. Someissues in deep dyslexia, involving the relationship of performance
on individual words for the same lesion, cannot be address if data are averaged across lesions. We show that peculiar
error combinations, such asreversalslike THUNDER =" storm” and STORM =-"“thunder” by GR (Marshall & Newcombe,
1966), also occur in our networks.

The Relevance of Training Procedure

H& Sjustify the use of an admittedly implausiblelearning procedureintwoways. Thefirst isto emphasizethat they
were not directly concerned with simulating aspects of the acquisition of reading, but only its breakdown in mature,
skilled readers. Thus, thelearning procedure can be viewed solely as a programming technique for determining a set of
weightsthat is effective for performing the task. The second justification they useisto point out that back-propagation
is only one of a number of ways of performing gradient descent learning in connectionist networks. Other more
plausible gradient descent procedures, such as contrastive Hebbian learning in deterministic Boltzmann Machines
(Hinton, 1989b; Peterson & Anderson, 1987), are more computationally intensive than back-propagation but typically
develop similar representations.

In a section entitled “The Relevance of Training Procedure,” we present simulations that replicate and extend
the H& S results using a deterministic Boltzmann Machine (DBM). Specifically, lesions throughout a DBM that
maps orthography to phonology via semantics produce qualitatively the same error pattern as was found with the
back-propagation networks. In addition, the DBM has interesting computational characteristics that are useful for
understanding two additional aspects of deep dyslexic reading behavior: greater confidence in visual vs. semantic
errors, and preserved lexical decision with impaired naming.

Confidencein visual vs. semanticerrors. Some deep dyslexic patients are more confident that their visual error
responses are correct as compared with their semantic error responses. Two analogues for confidence are developed
in the DBM: the speed of settling, and the quality of the resulting representations. Using both measures, visual errors
are produced with more confidence than semantic errors after damage.

Lexical decision. Deep dyslexic patients can often distinguish nonwords from wordsthey cannot read. Similarly,
the DBM continues to show good lexical decision performance after damage when yes responses to a letter string are
based on the degree to which the string can be re-created on the basis of orthographic and semantic knowledge.

Extending the Task Domain

A rather severe limitation of the H& S model is that it was trained on only 40 words, allowing only a very coarse
approximation to the range of visual and semantic similarity among words in a patient’s vocabulary. In particular,
important variables known to affect patients' reading behavior, such as word length, frequency, syntactic class, and
imageability/concreteness, were not manipulated. Simulations presented in a section entitled “Extending the Task
Domain: Effects of Abstractness’ extend the H& S approach to account for effects of concreteness in deep dyslexic
reading performance.
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Following Jones (1985) and others, we develop a semantic representation in which concrete words have “richer”
representations, in termsof number of activefeatures, than do abstract words. A back-propagation network isdevel oped
that maps orthography to phonology via these representations. Because abstract words have far fewer features, they
areless able to engage the semantic clean-up mechanism effectively, and must rely more heavily on the direct pathway.
Asaresult, lesions to the direct pathway of the input network reproduce the effects of concreteness/imageability and
their interaction with visual errorsfound in deep dyslexia: better correct performance for concrete over abstract words,
atendency for error responses to be more concrete than stimuli, and a higher proportion of visual errorsin response
to abstract compared with concrete words. By contrast, severe lesions to the clean-up pathway produce the reverse
advantage for abstract words, similar to the concrete word dyslexic, CAV (Warrington, 1981).

The paper concludeswith a General Discussion in which we focus on the principlesthat underly the ability of networks
to reproduce the characteristics of deep dyslexia, and their degree of generality. We then evaluate the degree to which
these computational principles account for the full range of patient behavior. The relationship between the current
approach and other theoretical accounts of deep dyslexiais considered next. We conclude by considering more general
issues regarding the impact of connectionist modeling in neuropsychology.

The Relevance of Network Architecture

Perhaps the most perplexing aspect of connectionist modeling is the design of network architecture, by which we
mean choices of numbers of units and their connectivity. One reason the choicesin network design often appear rather
arbitrary is that they are influenced both by general connectionist principles and by the specific nature of the task at
hand. Unfortunately, the general principles arerarely made explicit, and the effect of particular architectural decisions
on different aspects of network behavior in a specific task is often ill-understood. H& S attempt to make explicit both
the general and specific considerations that went into developing their model. The general considerations involve a
tradeoff between ensuring that the network has sufficient capacity to solve the task, while keeping the network as small
as possible to stay within available computational resources. The specific considerations center around attempting to
facilitate the ability of the network to map between two domains, orthography and semantics, which are arbitrarily
related. These two types of concerns influence the number, size, and interconnectivity of unit layers.

The simplest architecture would be to connect input units directly to output units, but such networks have severe
computational limitations that prevent them from learning arbitrary associations (Minsky & Papert, 1969). In general,
to accomplish such tasksit is necessary to add a least one layer of nonlinear hidden units between the input and output
layers (Ackley et al., 1985). Because these layers are not part of the input or output, the representations they use
must be determined by a general learning procedure. Typically only one hidden layer is used because most learning
procedures slow down exponentialy with the number of intervening hidden layers (see, e.g., Plaut & Hinton, 1987).
Such three layer networks are ubiquitous in connectionist modeling because they can learn any boolean function with
enough hidden units (an exponential humber in the worst case, but only a polynomial number for most “reasonable’
functions, Denker, Schwartz, Wittner, Sola, Howard, Jackel, & Hopfield, 1987)

In considering how units are connected, a major architectural distinction is between feed-forward and recurrent
networks. In afeed-forward network, unit layers can be partially ordered such that units receive connections only from
earlier layers. For a given input pattern, this restriction allows the final state of each unit to be computed in asingle
pass through the network, from input to output. However, for this very reason the extent that units in afeed-forward
network can interact is extremely limited. In particular, feed-forward networks cannot develop attractors because
each unit in the network only updates its state once—the network cannot reapply the unit nonlinearitiesto clean-up a
pattern of activity over time. By contrast, recurrent networks have no restrictions on how units are connected, enabling
interactions between units within a layer, and from later to earlier layers. When presented with input, units must
repeatedly recompute their states, because changing the state of a unit may change the input to earlier units. In this
way, recurrent networks can gradually settle into a stable set of unit states, called a fixedpoint or an attractor, in which
unit inputs and outputs remain constant.* Recurrent networks are particularly appropriate for temporal domains, such
as language processing (Elman, 1990) and motor control (Jordan, 1986). They are also more effective at learning
arbitrary associations because the reapplication of unit nonlinearities at every iteration can magnify initially small state

4In addition to point attractors, recurrent networks can be trained to settle into limit cycle (Pearlmutter, 1989) and chaotic attractors (Skarda &
Freeman, 1987), but this type of behavior isnot directly relevant for our purposes.
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differences into quite large ones. Feed-forward networks require very large weights and, hence, very long training
time to map similar inputs to quite different outputs. Unit interactions in a recurrent network can fill-out and clean-up
initially noisy or incomplete patterns, producing behavior in which the initial pattern of activity moves towards the
nearest attractor state.

The existence of attractorsfor word meanings formsthe basisfor H& S's explanation of the co-occurrence of visua
and semantic errorsin deep dyslexia. In order to allow such attractors to develop, H& S introduce direct connections
among closely related sememe units. However, these connections only allow pairwise interactions—there is no way
for combinations of sememesto have direct influences. For example, only the conjunction of green and found-woods
implies living—neither feature alone does. These higher-order semantic micro-inferences (Hinton, 1981) strengthen
the attractors for words (i.e. increase the sizes and depth of their basins of attraction) by filling-out the initially
incompl ete semantics generated bottom-up and with only pairwise interactions. In order to implement them there must
be hidden units that receive connections from some sememe units and send connections to others. While H& S could
have used the intermediate units for this purpose by introducing feedback connections to them from semantics, they
chose instead to introduce a second set of hidden (clean-up) units as an approximation to the influences of other parts
of the cognitive system on lexical semantics—these might be thought of as including aspects of meaning with less
direct influence on naming (e.g., the visual semantics of objects; Beauvois, 1982; Shallice, 1987, 1988b). In addition,
separating the groups of hidden units allows them to specialize differently: one group can directly mediate between
orthography and semantics; the other can make inferences among semantic features.

A final consideration in architecture design is the pattern of connectivity between layers of units. The capacity
of a network is largely determined by its number of connections, since the weights on these connections encode the
long-term knowledge used to solve the task. For a given number of weights, there is atrade-off between using many,
sparsely connected units versus using fewer, densely connected units. As described above, using many units resultsin
ahigher-dimensional representation in alayer, allowing easier discrimination between similar patternsin earlier layers.
However, because each unit is only sparsely connected to layers providing input, the complexity of the distinctions
it can learn is limited. In particular, as connectivity density is reduced it becomes harder for individual units to be
sensitive to higher-order structure in earlier layers and enforce higher-order coherencein later layers.

Most connectionist networks use complete connectivity between layers, but this can result in a large number of
connectionsfor networks with even a moderate number of units. Full connectivity between layersin the H& S network
would have resulted in almost 17,000 connections. Networks with far more capacity than is required to learn atask
tend to approximate a table-lookup strategy without capturing any interesting structure in the task. Accordingly, H& S
chose to include only a random 25% of the possible connections between layers, and intra-sememe connections only
among related semantic features, to reduce the network to acomputationally reasonabl e size of about 3300 connections.
In addition, reduced connectivity made the bottom-up input from orthography to semantics relatively impoverished,
particularly because the usefulness of individual intermediate units is limited by the absence of individual G = I
connections when input letters are represented by single grapheme units. H& S argued that impoverished bottom-up
input to sememe units encouraged reliance on clean-up interactions, resulting in stronger semantic attractors.

Even among recurrent networks with hidden units that build strong attractors with a minimum number of connec-
tions, there are a vast number of possible network architectures. H& S chose one and demonstrated that its behavior
under damage had interesting similarities with the reading behavior of deep dyslexic patients. For computational
reasons it is clearly not feasible to implement every alternative architecture in order to investigate the generality of
the H& S results. However, it isimportant to gain a better understanding of the relevance of the particular aspects of
their design. In this section, we develop five alternative architectures which differ from the H& S model in terms of
numbers of hidden units, connectivity density, existence of intra-sememe connections, location of clean-up pathway,
and separation of intermediate and clean-up units. We then systematically lesion each of these networks and compare
the effects, in order to better understand the impact of architectural differences on behavior under damage. Following
this, wetake up anumber of separate i ssues concerning aspects of the pattern of performance shown to varying degrees
by all of these networks. These considerations serve both to verify the generality of the results, and to extend the range
of phenomenain deep dyslexia accounted for by the modeling approach.

Alter native Architectures

Figure 5 depicts each of the five alternative architectures for mapping orthography to semantics. The networks, and
the main issuesthey are intended to address, are the following:
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Figure 5: Five aternative network architectures for mapping orthography to semantics.
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40-60 Intra-sememe connections. This network most closely approximates the original H& S network, with
40 intermediate units, 60 clean-up units, and 25% connectivity density. However, it lacks any direct
connections among sememe units, so it will allow usto investigate the importance of such connections.
The network has 3252 connections.

10-15d Connectivity density. Rather than using 25% connectivity density, the 10-15d network has complete
connectivity between layers. Lesionsto thisnetwork will allow usto evaluate theimpact of connectivity
density (hencethed inthename). Inorder to keep the number of connections approximately the same as
the other networks, only 10 intermediate units and 15 clean-up units were used. The resulting network
has 3134 connections.

40-80i Location of clean-up. This network has clean-up prior to semantics, at the level of the intermediate
units (hence the i), rather than within semantics. We can thus evaluate the importance of the location
of cleanup on behavior under damage, and whether the attractors must be semantic in order to produce
the H& S results. Specifically, the intermediate units are reciprocally interconnected with 80 clean-up
units, as well as interconnected among themselves. All connection pathways have 25% density, for a
total of 3226 connections.

80fb Separation of intermediate and clean-up units. Seidenberg and McClelland (1989) propose a frame-
work for mapping among orthography, phonology, and semantics. Although they only implement a
feed-forward version of the orthography-to-phonology mapping, the 80fb network is intended to ap-
proximate their proposed orthography-to-semantics pathway. Specifically, 80 intermediate units both
send connectionsto the sememe units, and receive feedback connections (hencethe fb) from the sememe
units. There are no separate clean-up units, and so this network allows us to eval uate the importance of
having separate groups of units for this function. The network has 25% connectivity density, resulting
in 3550 connections.

40-40fb Hybrid architecture. This network is a hybrid of the Seidenberg and McClelland architecture and the
H& S architecture. The network includes both feedback connections from sememe to 40 intermediate
units and a clean-up pathway with 40 units. The intermediate units are also intra-connected. Our
intention in devel oping thisnetwork wasto investi gatewhether having thesevarious meansof devel oping
attractors would make them more robust. With 25% connectivity density, the network has 3626
connections.

In addition to thesefive architectures, we also devel op areplication of the original H& S network (as shownin Figure 3).
Inwhat followsin devel oping the five aternative networks, any mentioned changes from H& S's original methodology
do not apply to the H& Sreplication network.

The Task

The task of each network is to generate the semantics of each of the 40 words used by H& S when presented with its
orthography. The semantic representations are the same as used by H& S (see Figure 1). However, orthography is
represented somewhat differently, in order to be consistent with the simulations described in the section on “ Extending
the Task Domain,” which use adifferent word set. Instead of using a separate unit for each possible letter at a position,
each letter is described in terms of a distributed code of eight features, shown in Table 3. The set of features was
designed to ensure that visually similar letters (e.g., E and F) have similar representations, while keeping the number
of features to a minimum. Since the H& S word set has some four-letter words, atotal of 32 orthographic units—in
contrast to |etter-specific grapheme units—will serve as the input layer of each network.

The Training Procedure

Each network was trained in the same way asthe H& S network, with two differences. Thefirst isthat the network was
allowed to run for eight instead of seven iterations to allow information about the input to cycle through the clean-up
loop and influence the semantic units an extratime. The second difference is that the orthographic input presented to
each network was corrupted by independent gaussian noise with mean 0.0 and standard deviation 0.1. Training on
noisy input amounts to enforcing a particular kind of generalization: inputs which are near known patterns must give
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Table 3: The assignment of features to letters for the distributed orthographic code.

A 01010110 J 11100000 S 00100001
B 10111001 K 10001011 T 11000100
c 00101000 L 11000001 u 10100100
D 10111000 M 10000111 v 00000110
E 11001000 N 10000010 w 00000111
F 11000000 o 00111100 X 00001110
G 01100001 P 10110000 Y 10000110
H 11001101 Q 00110010 z 01000011
I 11001100 R 10110011

Note. The meanings of the features are roughly (1) contains a vertical
stroke; (2) contains a horizontal stroke; (3) contains a curved stroke; (4)
contains aclosed part; (5) horizontally symmetric; (6) vertically symmetric;
(7) contains diagonal stroke; (8) discriminator between otherwise identical
letters.

identical responses. Thus, each word' s attractor must be strong enough to attract the range of initial semantic patterns
that are generated from the noisy versions of its orthography.

Training continued until each network could activate the correct semantic features for each word to within 0.1 of its
correct value. For each network, the following number of sweeps through the set of words was required, in increasing
order: H&S replication: 333, 40-60: 2640, 10-15d: 3625, 40-40fb: 4083, 80fb: 7302, and 40-80i: 14008. First
notice that, although training with noisy input should encourage stronger attractors, it takes an order of magnitude
more training to do so. For the networks trained with noise, training required a few thousand sweeps for all but the
40-80i network. Thereason that thislatter network took so much longer isthat it lacks any interactions among sememe
units, so these units cannot clean themselves up into near-binary responses. They must rely on the clean-up at the
intermediate level to eliminate the influences of noiseand drive them appropriately. Driving unitsinto binary responses
using only feed-forward connectionstypically involvestraversing down the bottom of along, shallow ravinein weight
space, which requires many sweeps through the training set (see Plaut & Hinton, 1987).

The Effects of Lesions

Twenty instances of lesions of a range of severity were applied to the main sets of connections in each network. A
wide range of severities were investigated: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, and 0.7. Using a proximity of 0.8
and a gap of 0.05 as the criteria for aresponse, correct, omission, and error responses were accumulated. Each error
response was then categorized in terms of its visual and semantic similarity to the stimulus. The percentages of overall
correct responses and distributions of error types were determined for each network. For reasons of space we present
here only a small selection of the results—for more details, see Plaut (Note 10). In particular, the basic analyses of
the type carried out by H& S are given for two networks only, namely the 40-60 network (Figure 6) and the 40-80i
network (Figure 7). Results are averaged over lesion severities which produce overall correct performance between
15-85%. The number of lesion severities falling within thisrange isindicated in parentheses below the label for each
lesion location in the error distribution graphs. In addition, “Chance’ is the distribution of error types if responses
were chosen randomly from the word set. Its absolute height is set arbitrarily—only the relative rates are informative.

Summary of Architecture Comparisons
Generality of the Hinton and Shallice Findings

There are a number of general conclusions that can be drawn from the properties of this set of networks. The
overall pattern of resultswith respect to correct performance and explicit error rates after lesioning is shown in Table 4.
Two results are clearly apparent. First, asin the original H& S simulations, lesions to the clean-up pathway are less
deleterious than those to the direct pathway. However, another aspect of the H& S findings does not generalize. For
some networks, I=-S lesions are more damaging than 0=1I lesions, but for others the opposite effect holds.
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Table 4: Correct and error rates after lesions of severity 0.3 in each network.

Direct pathway lesions

Clean-up pathway lesions

0=I I=S S=Cor I=C C=sSorC=I

Network Correct Errors Correct Errors Correct Errors Correct Errors

40-60 219 11.8 42.9 4.1 85.3 0.4 74.9 0.4

10-15d 38.1 315 50.1 8.6 80.3 3.0 819 14

40-80i¢ 279 7.1 14.1 0.0 56.5 25 59.3 2.3
80fb 29.4 13.3 9.6 14 91.0 0.3

40-40fb 315 14.0 46.9 25 96.0 0.0 90.3 0.3

H& S replication 38.1 5.0 8.4 2.8 76.0 0.3 259 14

?S=1 lesions are listed under “S=-C or I=-C,” and the I=-S connections should be considered part
of the clean-up pathway.

20



Table 5: Error distributions produced by representative lesions in each network.

Overall Conditional probabilities Vis/

Error Rates Vis& Sem

Network Leson n Rate Vis Sem Sem Other Ratio
0=1I 7 73 467 149 169 215 2.76
40-60 I=S 7 37 298 168 365 168 0.82
C=S 6 0.3 — 357 500 143 0.00
0=1I 8 250 534 144 103 219 5.18
10-15d S=C 6 36 351 322 270 5.7 1.30
Cc=S 6 0.5 — 600 36.0 4.0 0.00
0=1I 6 53 453 228 21.3 106 2.13
40-80i I=Ci 7 16 90 618 270 2.2 0.33
I=s 4 0.2 — 400 60.0 — 0.00
0=1I 6 81 437 21.3 152 198 2.88
80fb I=S 4 1.8 119 458 339 8.5 0.35
S=1I 3 0.7 — 688 188 125 0.00
0=1I 6 96 450 174 187 189 241
40-40fb I=S 5 1.7 121 318 500 6.1 0.24
C=S 5 0.7 — 286 714 — 0.00
0=1I 7 38 303 365 246 85 1.23
H&Sreplication I=S 5 22 81 465 419 35 0.19
C=S 6 10 61 612 327 — 0.19
Chance Distribution 29.9 6.2 11.8 522 247

Note. Data are from lesions that resulted in 15-85% correct performance in each
network. “n” refersto the number of lesion severities producing performance falling
within the 15-85% range, and “ Rate” is the average percentage of word presentations
producing explicit error responses for these lesions.

Aswas true of the H& S network, the rates of explicit errors are relatively low, with the highest being just above
30% after 0=1I lesionsin the 10-15d network. While the error rates of deep dyslexic patients vary considerably, in
general they are much higher than after most lesions in the network. Weakening the response criteria would increase
the overall explicit response rate, including errors, but this would also presumably increase the proportion of unrelated
errors. In part, the higher error rates of patients may reflect the fact that they have amuch larger available response set
than do the networks. This issue will be addressed more thoroughly in the General Discussion.

The most important simulation findings are those that concern the generality of the theoretically critical results
obtained by H& S. These fall into two parts. H& S's main conclusion wasthat all types of error—visual, semantic, and
mixed—aoccur with all locations of lesions. Asillustrated in Table 5, with a few minor exceptions concerning lesion
sitesthat giveriseto very low absolute error rates (all of which areincluded in thetable), this finding generalizesto all
the other networks examined. In particular, the success of the 80fb network in replicating the H& Sresults demonstrates
that the those results do not depend on having a separate set of clean-up units to perform semantic micro-inferences.
Intermediate units can learn both to convey information about orthography and to interact with semantics to form
attractors for word meanings. However, using intermediate units in this way has implications for the distribution of
error types—in particular, the rates of mixed visual-and-semantic errors. A second finding of H& S was that mixed
visual-and-semantic errors occur more frequently than one would expect given the independent rates of visual errors
and of semantic errors. This finding appears to be less general than the simple co-occurrence of error types. The
replication of the H& S network, using the original input representation and trained without noise, also exhibits higher
than expected mixed rates. However, among networks using the distributed letter representations and trained with
noise, the effect is only found when the intermediate units are directly involved in developing attractors—the 40-80i,
80fb, and 40-40fb networks, but not the 40-60 and 10-15d networks (compare Figures 6b and 7b).

Why might these differing patterns of effects occur? One possibility is that the 40-60 and 10-15d networks form
strong semantic attractors using the clean-up pathway, so that maximum visual similarity effectsoccur at aconsiderably
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earlier stage of processing than maximum semantic similarity effects. Thus, the transformation from visual to semantic
similarity is readlized through separable stages. The replication of the H& S network, trained without noise, forms
weaker semantic attractors using the clean-up units, so that more of the work of mapping visua to semantic similarity
iscarried out by thedirect pathway. Thiscompresses the stages over which visual and semantic similarity operate, and
therefore makes interactions between them in the stimulus set—the potential for mixed errors—more critical. Thisis
also true of the networks in which intermediate units are involved in implementing attractors. In these networks, the
attractors lie at a stage where visual and semantic influences cannot be separated. It should be pointed out that this
account is somewhat speculative—the main point is that the mixed error findings of H& S, while narrowly robust, do
not generalizeto all lesion sites of all connectionist networks. It is aconsequence of particular characteristics of some
network architectures.

The Strength of Attractors

At a more general theoretical level, the argument that H& S put forward of the importance of attractors in the
generation of errorsisborne out. The robustness of anetwork to lesions of aset of connections, measured by the rate of
correct performance, increases with the strength of the attractors at levels after the locus of damage. At the sametime,
the rates of explicit errors from lesions to these connections also rise. In essence, the attractors serve to clean-up both
correct and incorrect responses, reducing the number of omissions caused by damage. In contrast, lesions at or beyond
the level of the last attractors in a network produce a very low rate of overt responses, both correct and incorrect.

This effect can be seen by comparing the 40-60 network with the 10-15d network. Both networks use the same
input and output representations, were trained identically, and develop attractors at the semantic level. However, the
overall correct performance and explicit error rates of the 10-15d network are higher than for the 40-60 network for
both 0=1I and I=-s lesions (see Table4). The 10-15d network developsstronger attractors because itsfull connectivity
between layers makes it more effective than the 40-60 network at implementing semantic micro-inferencesthat depend
on theinteraction of two or more semantic features on athird. The probability that the semantic features involved will
be appropriately connected to some clean-up unitis 1.0 in the 10-15d network but quite small in the 40-60 network due
to its 25% connectivity density. The replication of the H& S network, which it was argued above has weaker semantic
attractors than the 40-60 network, is less robust overall to lesions of the direct pathway (although the balance between
0=-I and I=S isreversed) and has lower explicit error rates.

For the 40-80i and 80fb networks, correct and error rates are comparable to those of the 40-60 network for 0=-I
lesions, which are beforethe level at which their attractors operate. A different pattern is obtained from lesionsto I=S
connections, which are post-attractor for the 40-80i network, within-attractor for the 80fb network, and pre-attractor
for the 40-60 network. Both the correct and error rates are much lower for the first two networks than for the 40-60
network (e.g., I=-S(0.3), correct: 40-80i: 14.1% and 80fb: 9.6% vs. 40-60: 42.9%; errors. 40-80i: 0.2% and 80fb:
1.8% vs. 40-60: 3.7%).° The very low error rate for the post-attractor I=>S lesions in the 40-80i network reinforces
the arguments presented earlier that the occurrence of explicit errors depends on damaged input being cleaned-up into
an incorrect attractor.

Quantitative Variation in Error Pattern

For all networks, error rates are much higher for 0=-I lesionsthan for I=-S lesions, presumably because the output
of the undamaged I=-S connections will be more likely to be closer to aword representation than will their damaged
output. In addition, for the networks that have attractors only at the semantic level (H& S replication, 40-60, 10-15d),
both the absolute and relative rates of visual errors drop sharply between 0=1 and I=S lesions, and the absolute
and relative rates of semantic errors climb (although the absolute rise is a modest one). This general trend is shown
directly in the ratio of visual errors to semantic errors lesions closer to orthography compared with lesions closer to
semantics (see the right-hand column of Table 5). These findings are similar to those obtained by H& S and indicate
that such networks can give rise to the quantitative differences in the distribution of error types found across deep
dyslexic patients.

We now turn to a number of separate issues that concern more detailed aspects of the pattern of correct and impaired
performance shown to varying degrees by all of these networks. These considerations serve both to verify that the

5Not surprisingly, the hybrid 40-40fb network shows hybrid characteristics.
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general effects produced by the networks aren’t due to idiosyncratic characteristics of the word set or interpretation
procedure, and also to demonstrate that the networks behave like deep dyslexic patients in terms of the pattern of
responses after individual lesions in addition to exhibiting a similar overall pattern of performance when averaged
acrosslesions.

Generating Phonological Responses

Most data on deep dyslexic reading comes from tasks in which the patient produces a verbal response to a visually
presented word. Sincethe output of each network we have considered thusfar consists of apattern of semantic activity,
some external procedure is needed to convert this pattern into an explicit response so that it can be compared with the
oral reading responses of deep dyslexic patients. Following H& S, the procedure we have used compares the semantic
activity produced by the network with the correct semantics of all known words, selecting the closest-matching word
aslong as the match is sufficiently good (the proximity criterion) and sufficiently better than any other match (the gap
criterion). Therationalefor these criteriaisthat semantic activity that istoo unfamiliar or ambiguouswould be unable
to drive an output system effectively. However, satisfying the criteria only coarsely approximates the requirements of
an actual output system. In particular, while it may be reasonable that semantics which failed the criteria could not
drive aresponse system, no evidence was given that semantics which satisfied the criteria could succeed in generating
aresponse. Also, the criteria are insensitive to the relative semantic and phonological discriminability of words and
so may be inadvertently biased towards producing certain effects. Finally, at a more general level, if too much of the
difficulty of a problem is pushed off into the assumed mechanisms for generating the input or interpreting the output,
therole of the network itself becomes lessinteresting (Lachter & Bever, 1988; Pinker & Prince, 1988).

For these reasons, it would be a significant advance over the use of response criteria to extend the networks to
derive explicit phonological responses on the basis of semantic activity. Implementing afull version of the semantic
route would ensure that the occurrence of the deep dyslexic error pattern under damage is due to properties of the
network and not to those of an interpretation procedure external to the network. Furthermore, a number of additional
issues can be addressed in a model that maps orthography to phonology via semantics that cannot be addressed in
a network that only derives semantics. Specifically, H& S could consider only the input and central forms of deep
dyslexia (Shallice & Warrington, 1980). Furthermore, they had to assume that the specific nature of the output system
plays no rolein these patients' reading errors, contrary to many theories of deep dyslexia (e.g., Coltheart et al., 1987;
Marshall & Newcombe, 1966). With afull semantic route, it becomes possible to directly investigate impairments in
deriving phonology from semantics by lesioning connections in the phonological output system. In addition, without
having to apply criteriato semantics, we can investigate the effects of lesions to the semantic units themselves.

Accordingly, we develop an output network analogous to the input networks described above, but which takes
as input the semantic representation of a word and produces a phonological representation. This network is then
combined with each input network that maps from orthography to semantics, resulting in much larger networks that
map from orthography to phonology via semantics.

The Task

The input to the output network consists of the 40 semantic representations that served as the output of the input
networks. A phonological output representation was defined in terms of 33 position-specific phoneme units (see
Table 6). For each word, exactly one unit in each of three positions is active, possibly including a unit in the third
position that explicitly represents the absence of athird phoneme. This representation allows the units that represent
alternative phonemes in the same position to compete in a“winner-take-all” fashion.

Because damage will impair the ability of the network to derive the correct pronunciations of words, we need
some way of deciding whether corrupted phonological activity constitutes a well-formed pronunciation. Given our
phonological representation, anatural criterion isto require that exactly one phoneme unit be activein each of thethree
positionsin order to produce aresponse. Since units have real-valued outputs which arerarely 0 or 1, we need a more
precise definition of “active” and “inactive.” The criterion we use is that the most active phoneme at each position is
included in the response if its likelihood, relative to the competing phonemes at that position, exceeds a phonol ogical
response criterion of 0.6.8 If, at each position, exactly one phoneme satisfies this criterion, the concatenation of these

SMoreformally, if y; isthe output of phoneme unit 7, and d; isits smallest differencefromOor 1 (i.e. d; = y; if y; < 0.5and 1 - y; otherwise),
then the network produces aresponseif, for every position p, HZ e d; > 0.6and exactly oney; > 0.5. The product is the probability of the most

likely binary output vector at the position when the states of the phoneme units are interpreted as independent probabilities. Thus, the response
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Table 6: Phonologica representations of the Hinton and Shallice words.

(a) Phonemes allowed in each position.

Pos.  Phonemes

1 bddyghij k!l mnprt
2 aar awe ewi ie o o0a owu
3 bdgknmpt -

(b) Assignment of phonemesto words.

Indoor Objects Animals Body Parts Foods Outdoor Objects
BED /bed/ BuG /bug/ BACK /bak/ BUN Ibun/ BOG /bog/
CAN [/kan/ caT lkat/ BONE /boan/ HAM Iham DEW /dy ew-/
cor [/kot/ cow lkow-/  @uT Igut/ Hock [/ hok/ DUNE /dy ewn/
cup  /kup/ DOG /dog/ HIP I'hi p/ LIME /liem LOG /Il ogl/
GEM [/j em  HAwkK /hawk/ LEG Il egl NUT Inut/ MUD / mu d/
MAT /mat/ PG Ipi gl LIP i pl POP Ipop/ PARK [ par k/
MUG /mug/ RAM /ramn PORE /paw-/ PORK /[/pawk/ Rock [/r ok/
PAN /pan/ RAT /Irat/ RIB Iri bl RUM Irum TOR /'t aw-/

Note. The letter(s) used to represent phonemes are not from a standard phonemic alphabet but rather are
intended to have more intuitive pronunciations. Also, the definitions are based on British pronunciations
(e.g. HAWK and PORK rhyme).

phonemes is produced as the response; otherwise, the phonological activity produced by the network is considered
ill-formed and it fails to respond.

It is important to point out that this type of criterion is quite different from the H& S criteria, which ensure that
an output is semantically familiar. The criterion we employ does not rely on any knowledge of the particular words
the network has been trained on—it considers only the form of the output representation. Also notice that, under this
procedure, there are alarge number of legal responses other than those the network istrained to produce. We call such
responses blends because they typically involve a phonological blend of known responses (i.e. a literal paraphasia).
The architecture and training procedure for the output network were designed specifically to discourage the production
of blends under damage, rather than to simulate the development or detailed operation of the human speech production
system (see Plaut & Shallice, Note 11, for further relevant simulation results and discussion).

The Network Architecture

Figure 8 depicts the architecture of a complete network that maps orthography via semantics to phonology, using
the 40-60 input network. The output network forms the top half of this complete network, with the semantic units
(without a clean-up circuit) constituting itsinput layer. It consists of a direct pathway from semantic to phonology via
40 intermediate units, and a phonological clean-up pathway involving an additional 20 clean-up units. Only arandom
25% of the possible connectionsin the direct pathway areincluded, but al possible connectionsin the clean-up pathway
areincluded. Thisfull connectivity density allows the output network to develop strong phonological attractors, much
like the semantic attractors of the 10-15d network.” The output network has atotal of 2745 connections.

The Training Procedure

Our training strategy will be to develop the output network incrementally. Training parts of the network separately
at the outset encourages each part to accomplish as much of the task as possible, without relying on the strengths of
the other parts. It should be mentioned that, although the approach of developing phonological attractors independent
of semantics is primarily computationally motivated, it is not unreasonable on empirical grounds that attractors for

procedureis closely related to the maximum-likelihood interpretation of the cross-entropy error function used to train the network (Hinton, 1989a).
A second output network architecture, which included additional connections among phoneme units within each position, was also investigated,
and produced qualitatively similar results as the output network described here (see Plaut, Note 10).
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Figure 8: The architecture for mapping orthography to phonology via semantics. Notice that the names of sets of
connections involving the intermediate and clean-up units in the phonological output network are subscripted with ap
to differentiate them from the corresponding sets of connections in the input network.

word pronunciations might develop as part of the process of learning to speak before these attractors would become
available in reading.

The phonological clean-up pathway of the output network was trained to produce the correct phonemes of each
word during the last three of six iterations when presented with these phonemes corrupted by gaussian noise with a
standard deviation of 0.25. Because the phoneme units are both the input and output units for this stage of training, the
phonemes cannot be presented by clamping the states of these units. Rather, these units were given an external input
throughout the six iterationswhich, in the absence of other inputs, would produce the specified corrupted activity level.
Thistechniqueisknown as soft clamping. The direct pathway wastrained to produce the phonemes of each word from
the semantics of each word, corrupted by gaussian noise with standard deviation 0.1. The input units were clamped
in the normal way. Each pathway was trained to activate the phoneme units to within 0.2 of their correct values for a
given input. After very extensive training they accomplished thisin general, but the amount of noise added to their
inputs made it impossible to guarantee this performance on any given trial. For this reason, training was halted when
each pathway met the stopping criteria over ten successive sweeps through the training set.

The separately-trained clean-up and direct pathways were then combined into a single, complete output network.
This is straightforward because the two pathways have non-overlapping sets of connections, except for the biases of
the phoneme units. For these, the biases from the clean-up pathway were used. The network wasthen given additional
training on noisy input, during which only the weights in the direct pathway were allowed to change. In this way the
direct pathway adjusted its mapping to more effectively use the fixed phonological clean-up in generating correct word
pronunciations.

Finally, separate copies of the output network were attached to each input network and given afinal tuning to ensure
that the output network operated appropriately when its input was generated over time by an actual input network,
rather than being clamped. The weights of the input networks were not allowed to change, so that they continued
to derive the correct semantics for each word. After this final training, which took at most a few hundred additional
training sweeps, each combined network would correctly derive the semantics and phonology of each word from its
orthography.
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The Effectsof Lesions

Twenty instances of lesions of the standard range of severity were applied to the main sets of connections, aswell as
to the semantic units, in each network. Correct, omission, and error responses were accumulated using a phonological
response criteria of 0.6 as described above. The percentages of overall correct responses and distributions of error
types were then determined for each network. Again, in the interest of space and to ease comparison, we present
detailed analyses only for when the output network is attached to the 40-60 input network.

Figure 9 presents the overall correct rates of performance after lesions throughout the extended 40-60 network.
Compared with the use of response criteria (see Figure 6a), the output network makes the 40-60 network somewhat
more sensitive to lesions—on average, correct performanceis 14.2% lower. However, therelativelevels of impairment
for different input lesion locations remains the same, with 0=1I lesions producing the greatest impairment and S=-C
lesionsproducing theleast. Also, lesionsto the semantic unitsarefar moredebilitating than lesionsto theconnectionsin
the clean-up pathway. Output lesions reduce correct performance by 12.2% more, on average, than the corresponding
input lesions. The impairment after Cp=P lesions is far worse than the corresponding ¢ =S lesions. However,
compared with 0=-I lesions, S=Ip lesions are less detrimental.

Figure 10 shows the distribution of error rates for all lesions of the extended 40-60 network. In addition to
visual and semantic similarity, errors can now be phonologically similar—that is, have overlapping phonemes. Since
visual and phonological similarity typically co-occur, we considered an error to be phonological only if it was more
phonologically than visually similar (e.g., HAWK / h awk/ and PORK / p awk/ ). In addition, some potential errors
are appropriately categorized as phonological-and-semantic under this definition (e.g., bDEw / dy ew -/ and DUNE
/ dy ewn/ ). It should be pointed out that errors categorized asvisual or mixed visual-and-semantic may actually result
from phonological rather than visua influences—the current word set does not contain enough words that dissociate
visual and phonological similarity to investigate the relative contribution of these two influences. We will take up the
issue of distinguishing the influences of visual and phonological similarity on errorsin the General Discussion.

Compared with the corresponding data using the response criteria (see Figure 6b), the extended 40-60 network
shows a somewhat lower rates of semantically related and unrelated errors with early lesions (0=-I and I=-S), but in
general the error patterns are rather similar. Semantic clean-up lesions now produce significant error rates because of
the attractors provided by the output network. The distributions of these errorsis roughly similar to the distributions
for earlier lesions. By contrast, lesions to the semantic units themselves leads to a stronger bias towards semantic
similarity in errors.

Lesions to the direct pathway of the output network (S=-Ip and Ip=-P) produce error patterns much like input
lesions, although there is a dlightly greater bias towards semantic errors relative to visual/phonological errors. These
latter errors almost certainly reflect phonological rather than visual similarity.® However, most striking isthe extremely
low error rate for lesions within the phonological clean-up pathway (P=-Cp and Cp=-P). Although many words can
still be read correctly with impaired clean-up—average correct performance after these lesions is 50.3%—it is very
rare that phonology will be cleaned up into the pronunciation of another word. In this way, phonological clean-up
lesions produce behavior much like semantic clean-up lesions in networks with no phonological output system—in
both cases, lesions to connections which implement thelast level of attractorsresult in very low rates of explicit errors.
Thisresult provides direct support for H& S's claim that attractors are critical for producing error responses.

Except for phonological clean-up lesions, the rates of visual, mixed visual-and-semantic, and semantic errors,
relative to the rates of other errors, is greater for all lesion locations than predicted by chance. Thus, lesions anywhere
along a pathway from orthography to phonology via semantics produce qualitatively similar patterns of errors. In this
way, the implication from H& S sresults, that the mere occurrence of particular error typesis insufficient to determine
apatient’slesion location, appearsto generalizeto lesions all along the semantic route. In addition, the fact that lesions
to afull implementation of the semantic route produce qualitatively similar error patterns as when responses are based
on criteria applied to semantics provides support for the validity of our architectural comparisons based on networks
that only map orthography to semantics.

8|tistill possiblethat errors produced by damage after semanticswould show influences of visual similarity. The output network receivesinput
from semantics before its activity has settled correctly, and theinitial semantic patterns are influenced by visual similarity (see Figure 4). However,
this effect on errors due to damage in the output network is likely to be small relative to the effect of phonological similarity.
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Item- and Category-Specific Effects

Thesmall size of the H& Sword set raises the possibility that many of the effectsarise fromidiosyncratic characteristics
of the word set itself, and not to any real systematic relationship between orthography and semantics. In particular, it
is possible that only a handful of words account for most of the errors. In this section we address the extent that the
effects we have demonstrated are distributed across the entire word set.

Considering correct performance first, although there is a reasonable amount of variability among words, it is not
the case that some words are always impaired or intact regardless of the type of damage. Thus, for the 40-60 network
using the response criteria, overall correct rates per word vary between 34.6% (LOG) and 81.5% (CAT). The pattern
of overal correct performance is somewhat different depending on how output is generated, although the correlation
between the correct rates using the response criteria and those using the output network is moderate but significant
(0.47, p < .005).

There are aso some systematic differences in correct performance across categories. In fact, particular lesionsin
some networks can produce quite dramatic category effects that are even more pronounced than those observed by
H& S. For example, ¢=-S(0.7) lesionsin the 10-15d network produce a striking sel ective preservation of animals (78%
correct) and selective impairment of body parts (3% correct) relative to the other categories (35% average correct),
as well as relative to other lesions yielding similar overall correct performance, such as I =-S(0.4) (32% average
correct). Interestingly, the 40-40fb network also shows a selective preservation of animals with ¢=-5(0.7) lesions
(96% correct), but now foods and outdoor objects (31% and 26% correct), rather than body parts (56% correct), are
selectively impaired. The nature of the selective deficits observed after damage appears to have as much to do with
the particular characteristics of individual networks as with the relationships among semantic representations. In fact,
the selective preservation of foods found by H& S did not arise in a second network that only differed from the first
initsinitial random weights—atype of variation typically not considered important (but see Kolen & Pollack, 1991).
Clearly moreresearch is required to understand these effects.

Turning to a consideration of item effects in error responses, we will take the 40-60 network as an example, as
it is the closest to the original H& S model. Visua errors are distributed throughout the word set. Only four of the
words, BED, PIG, RAT, and HIP, produce no visual errors for any of the lesions. For the rest of the words there is a
wide range of rates, with the highest being for coT and PORE, both having about four times the average rate. In fact,
thereisasignificant correlation (0.49, p < .005) between the observed visual error rates and the expected rates given
the distribution of visual similarity throughout the word set. Thus, the distribution of visual errors across words is
relatively unbiased with respect to visual similarity.

Semantic errors are somewhat less uniformly distributed. Nine of the words produce no semantic errors, while
DOG produces almost twice as many as the word with the next highest rate, GEM. Outdoor objects have a uniformly
low rate of semantic errors, while the rates for body parts are relatively high and distributed throughout the category.
While the seven words with the highest rates account for 56% of the semantic errors, the remaining errors are spread
across al but 9 of the 33 remaining words. The correlation of the distribution of semantic errors with that expected
from the semantic similarity of the word set is marginally significant (0.30, p < .06).

In contrast, the network shows a strong bias to produce mixed visual-and-semantic errors for particular pairs of
words. Almost half (18) of the words do not produce any mixed errors. Of the remaining words, the top three (PAN,
HIP, and LIP) account for 45% of the errors; the top six, over 65%. Thereisvirtually no correlation (0.09) between the
distribution of mixed errors across words and the distribution of visual-and-semantic similarity.

Overdll, the variation of the rates of various types of errors across words demonstrates that the effects in error
patterns produced under damage do not arise from idiosyncratic characteristics of afew words. A possible exception
is the mixed visual-and-semantic errors—the one theoretically important topic where the original H& S findings did
not generalize consistently. However, the considerable degree of variability of error types across categories raises a
concern about the use of these categories in defining semantic similarity. In the next section we address this issue
directly.

Definitions of Visual and Semantic Similarity

Following H& S, we have considered a pair of words to be visually similar if they overlap in at least one letter, and
semantically similar if they come from the same category. These definitions are intended to approximate the criteria
used in categorizing the reading responses of patients. However, they are at best only coarse approximations. In
particular, our definition of visual similarity is considerably more lax than that used for patients, where typically a
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stimulus and response must share at least 50% of their letters to be considered a visua error (Morton & Patterson,
1980).

In order to ensure that our results are not biased by the particular definitions of similarity we used, we reclassified
the errors produced by the 40-60 network using criteriafor visual and semantic similarity based on the actual proximity
values of each stimulus-response pair. For ease of comparison, the values of these criteria were defined so that the
incidence of error types among all word pairs occurring by chance approximated that for the origina definitions.
Specifically, a pair of words were considered visually similar if the proximity of their orthographic representations
was greater than 0.55, and semantically similar if the proximity of their semantic representations was greater than
0.47. While these criteria result in only a 0.5% decrease in the incidence of visual similarity and a 1.3% increase in
the incidence of semantic similarity, they significantly change the distributions of these similarities over word pairs.
Thisis because proximity is based on shared features, so that |etters can resembl e other |etters without being identical,
and words can be semantically related without being in the same category. Asaresult, thereisonly a0.64 correlation
between the assignment of visual similarity using letter overlap and using the proximity criterion. The correlation for
semantic similarity isonly 0.72. For both, only about three-fourths of the word pairsthat are similar using the original
definitions remain so using the proximity criteria.

In fact, for lesions to the 40-60 network the distribution of error types using the proximity-based definitions of
visual and semantic similarity is remarkably similar to the distribution obtained with the original definitions (shownin
Figure 6b). When the response criteria are used, the only significant difference is that the proximity-based definitions
result in a lower rate of other errors for lesions of the direct pathway. Thus, many of the error responses that are
considered unrelated to the stimulus when using the original definitions do actually reflect the influences of visual
or semantic similarity when measured more accurately. However, it should be noted that other errors still occur, as
they do in patients. This effect is not apparent when using the output network, although 0=I lesions do produce a
dightly higher rate of semantic errors with the proximity-based definitions. Overall, the similarity of the pattern of
results indicates that the use of the original definitions for visual and semantic similarity, in terms of letter overlap and
category membership, does not significantly bias the results.

Visual-Then-Semantic Errors

In addition to producing error responses that are directly related to the stimulus either visually or semantically, deep
dyslexic patients occasionally produce errorsin which the rel ationship between stimulusand responseis more complex.
For example, Marshall & Newcombe's (1966) patient GR read SYMPATHY as*“ orchestra.” They considered thisavisual
error, SYMPATHY =-"“symphony”, followed by a semantic error, SYMPHONY =-"orchestra’, and so termed it a visual-
then-semantic error. Subsequently, this type of error has been observed in a number of other deep dyslexic patients
(see Coltheart, 1980a)—other examples include STREAM =-(steam)="“train” by HT (Saffran, Schwartz, & Marin,
1976), FAVOUR =(flavour)=-“taste” by DE and copious=-(copies)="carbon” by PW (Patterson, 1979). Although
visual-then-semantic errors are quite rare, the possibility of their occurrence at all is rather perplexing, and certainly
theoretically relevant. We know of no attempt to explain them other than Marshall & Newcombe's (1973) remark that
they are “compound mistakes which are a function of misperception plus semantic substitution” (p. 186). They seem
to be generally assumed to arise from combining two separate errors.

Given that visual-then-semantic errors are an acknowledged characteristic of deep dyslexic reading, the question
arises asto whether they occur after single lesionsto our networks. Because the stimulus and response of avisual-then-
semantic error are neither visually nor semantically related, up until now wewould classify such errorsasother. Hence,
we analyzed the other errorsproduced by the 40-60 network to determine whether some of them are more appropriately
classified as visual-then-semantic. A visual -then-semantic error occurs when the stimulus and response are unrel ated,
but there isathird word, which we will call the bridge, that is visually related to the stimulus, semantically related to
the response, and was directly involved in producing theerror. Thislast point isassumed for patient errors because the
likelihood of aresponse being appropriately related to the stimulus by chance is assumed to be negligible. However, in
the simulations the small size of the word set and high chance rate of visual and semantic similarity make it necessary
to demonstrate that the relation of the presumed bridge word to the stimulus and response does not arise merely by
random selection from the word set.

When using the criteria to generate responses, for each other error we identified the potential bridge word as the
one whose semantics had the second-best match to those generated by the network under damage (the best matching
word is the response). If this word was visually related to the stimulus and semantically related to the response, we
considered the error to be visual-then-semantic. Of the 114 other errors produced by the 40-60 network, 49 (43.0%)
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satisfied these criteria. The chance rate of visual-then-semantic errors can be calculated by estimating how often the
next-best matching word would meet the criteria even if it had no influence on the error. Thisrate is just the chance
rate that the bridge isvisually related to the stimulustimes the chance ratethat it is semantically related to the response,
given that the response is neither visually nor semantically related to the stimulus. Thefirst term isjust the overall rate
of visual similarity for word pairs other than the stimulus and response (29.9%). The rate that the bridge and response
are semantically related by chance is much higher than the overall rate of semantic similarity because the bridge word
was selected on the basis of how well its semantics match those generated by the network (which match the response
best). We can use as an estimate the rate at which the response and bridge words are semantically related over all other
errors produced by the network, which is 83.3%. Thus, the chance rate of visual-then-semantic errorsis approximately
24.9%, which is only dlightly more than half the observed rate.

When using an output network, it is possible for the response generated at the phonological layer to differ from the
best matching word at the semantic layer (even with the output network intact). Under these conditionswe can apply a
more conservative, but also more informative, definition of visual-then-semantic errors. Specificaly, for each error in
which the stimulus and response are unrel ated, we can use the best-matching word at the semantic layer asthe potential
bridge word. If thisword is visually related to the stimulus and semantically related to the response (but not identical
or it would be avisua error), the other error is considered to be visual-then-semantic. It is clear that the bridge word
is playing arole in the error because the phonological response is based solely on the generated pattern of semantic
activity, which is most similar to that of the bridge word. Of the 97 other errors produced by input lesions to the 40-60
network with the output network generating responses, 12 (12.4%) satisfy the criteria for visual-then-semantic errors
(e.g., BOG =-(dog)=-"rat"). In contrast, only four of the other errors (4.1%) involve semantic similarity followed by
visual/phonologi cal similarity (e.g., cow =-(pig)=-"pan”). Although the chance rate of this type of error is the same
as for visual-then-semantic errors, it is observed much less frequently, both in patients and in the network.

For some of the visual-then-semantic errors (e.g., BOG=(pig: prox 0.91, gap 0.10)="ram”) the generated
semantics match those of the bridge word well enough to satisfy the response criteria (for a visual error). Even so,
the semantics are sufficiently inaccurate that the (intact) output network produces a semantic error. All but one of the
visual-then-semantic errors were caused by damage to the direct pathway, with most arising from 0=1I lesions. This
makes sense given that, under our definition, visual-then-semantic errors consist of a visua confusion in the input
network followed by a semantic confusion in the output network. In a sense, we interpret visual-then-semantic errors
asvisual errors gone awry under semantic influences. Because the damaged input network failsto clean up the visual
error completely, the output network is given somewhat corrupted input. Even though it isintact, it may misinterpret
thisinput as a semantically related word.

Effects of Lesion Severity

To thispoint, al of the data we have presented on the relationship between types of errors have averaged over arange
of lesion severities, typically over those producing correct performance between 15-85%. However, it is possible that
the distribution of error types changes with lesion severity. In addition, the extent of this effect may be influenced by
the nature of the output system employed. Rather than present detailed data, we simply describe the effects that hold
for all of the network architectures.

The most basic effect isthat error ratesincrease with lesion severity. Our main motivation for averaging only over
lesions producing a limited range of correct performance in previously analysesis that otherwise the results would be
dominated by effects from the most severe lesions, which often do not show the typical distribution of error types. In
addition, the correct performance of most of the patients we are considering falls within this range.

What is more interesting than the fact that absolute error rates rise with lesion severity is that the distribution of
error types changes. Specifically, the rates of visual and other errors rise more quickly with increasing lesion severity
than the rates of semantic and mixed visual-and-semantic errors. If the same data is reinterpreted in terms of the
proportion of each error type, then the proportion of error responsesthat are unrelated to the stimulusincreases steadily
as performance getsworse. The proportions of the remaining error types all decrease at about the same rate, both when
using the response criteria and the output network. Thus, for the moderate |esions we consider the relative proportions
of the various error types do not change drastically with lesion severity, and so our decision to average over lesions
producing moderate correct performance appears warranted.
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Error Patternsfor Individual Lesions

Our procedure for lesioning a set of connections involves randomly selecting some proportion of the connections
and removing them from the network. In order to ensure that the ensuing effects are not peculiar to the particular
connections removed, we carry out 20 instances of each type of lesion and average the results across them. On the
other hand, it must be kept in mind that the model is compared with individual patients, each of whom have aparticular
lesion. Inasense, for agiven simulation experiment with four locations of nine severities of lesion, we are creating 720
simulated patients, with arelatively high proportion of them displaying the characteristics of deep dyslexia. However,
there are some issues in deep dyslexia, involving the relationship of performance on individual words for the same
lesion, that to this point we have been unable to address.

One issue concerns the correct performance on words that are given as responses in errors. Some theories of
reading errorsin deep dyslexia(e.g., Morton & Patterson, 1980) assume that aword produces an error when itslexical
entry is missing from some lexicon, with a closely-matching word whose lexical entry is present being given as the
response. If we also assume that words are read correctly when their entries are present in the lexicon, such a theory
predicts that words given as responses in errors should always be read correctly.

In fact, patients usualy, but not always, adhere to this pattern. For example, DE read SWEAR as “curse” but
then gave the response “1 don’'t know” to CURSE as stimulus (K. Patterson, personal communication). GR gave no
response to SHORT or GOOD, but produced the errors LITTLE =“short” and BRIGHT ="good”, as well as the errors
BLUE ="green” and GREEN ="peas’ (Barry & Richardson, 1988). In fact, at another time GR read correctly only
54% of words he had previously given as responses in semantic errors—just slightly better than his original correct
performance of 45% (Marshall & Newcombe, 1966).

If we examine the pattern of correct and incorrect performance for individual lesions of the 40-60 network when
using the response criteria, we find that only 64.1% of the words given as the response in an error are read correctly.
31.2% of error responses produce an omission while 4.6% lead to another error. The high rate of omissionsmay simply
be dueto our stringent criteriafor overt responses. However, the fact that 4.6% of error responses produce other errors
when presented as stimuli clearly violates the prediction of atheory that explains errors in terms of missing lexical
entries. In the damaged network, the attractor for aword is not either present or absent, but rather, it can effectively
operate to produce a response given some inputs but not others.

It is possible for an even more perplexing relationship to hold among the words producing errorsin a patient. It has
been observed that a pair of words may produce each other as error responses. For example, GR produced THUNDER
="storm” and STORM =-"thunder” (Marshall & Newcombe, 1966), while DE produced ANSWER ="ask” and ASKED
="answer” (K. Patterson, personal communication). It is hard to imagine how a mechanism that maps letter strings
to pronunciations via meaning might possibly produce such behavior under damage.

Such response reversals occur in our simulations, but they are very rare. None are found in the corpus of errors
produced by the 40-60 network. However, both the 10-15d and 40-80i networks produce a few of them when using
theresponse criteria. For example, a0=-I(0.1) lesion to the 10-15d network resulted in the visual errors MAT =" mud”
and MUD ="mat”, while a 0=-I1(0.7) lesion produced the visual errors MUG ="“nut” and NUT =“mug”. Similarly in
the 40-80i network, a0=-I(0.3) produced the other errorsMuG =-"hock” and HOCK ="“mug”, while a0=-1(0.7) lesion
produced the mixed visual-and-semantic errors HIP="lip” and LIP=-"hip".

How might a network produce such response reversals? Recalling Figure 4, we can interpret damage to the direct
pathway as corrupting the initial pattern of semantic activity derived from orthography. One explanation for the
existence of response reversals is that the attractors for words are sensitive to different aspects of this pattern. For
example, suppose that the attractor for HIP depends on some particular set of initial semantic featuresto distinguish it
from LIP, but the attractor for LIP depends on a different set to distinguish it from HiP (this cannot be represented in a
two-dimensional rendition of semantic feature space like that in Figure 4). If both of these sets of features arelost due
to aparticular lesion, the errors HIP=-"lip” and LIP=-"hip” are both possible. In essence, an explanation for response
reversals must allow a more complicated interaction between orthographic and semantic information than is typically
provided in theories based on discrete lexical entries for words.

Summary

An examination of the effects of lesions on five aternative architectures for mapping orthography to semantics has
served both to demonstrate the generality of the basic H& S results as well as to clarify the influences of aspects of
network architecture on the detailed pattern of errors. Extending networksto generate phonological output on the basis
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of semantics lead to qualitatively similar effects under damage as applying criteria to semantics. A consideration of
more specific effects at thelevel of individual lesions, error types, and words reinforced the correspondence of network
and patient behavior.

Perhapsthe most general principleto emerge from these experimentsis theimportance of the nature of the attractors
developed by the network. Although network architecture can have a strong influence on this process, ultimately it is
the learning procedure which derives the actual connection weights that implement the attractors. Thus, it isimportant
that we evaluate whether the nature of the attractors, and hence the behavior they exhibit under damage, are the result
of specific characteristics of the back-propagation learning procedure, or whether the results would generalize to other
types of attractor networks. The next section addresses this issue by attempting to replicate and extend the results
obtained thus far using a deterministic Boltzmann Machine.

The Relevance of Training Procedure

Learning plays a central role in connectionist research. The knowledge needed to perform a task must be encoded in
terms of weights on connections between unitsin anetwork. For tasks that involve fairly simple constraints between
inputs and outputs, it is sometimes possible to analytically derive a set of weights that is guaranteed to cause the
network to settle into good solutions (Hopfield, 1982; Hopfield & Tank, 1985). However, for tasks involving more
complex relationships between inputs and outputs, such as mapping orthography to phonology via semantics, correct
behavior requires such highly-complex interactions among unitsthat it is no longer feasible to hand-specify the weights
between them. In this case, it is necessary to rely on alearning procedure that takes these interactions into account in
deriving an appropriate set of weights.

Although the error on atask is the result of the combined effects of all the weights, the crux of most learning
procedures is a simplification that calculates how each weight in the network should be changed to reduce the error
assuming the rest of the weights remain fixed. A natural way to change the weight is in proportion to its influence on
the error—that is, in proportion to the partial derivative of the error with respect to the weight. Although the weight
changes are calculated asif other weightswill not change, if they are small enough their collective effect is guaranteed
to (very dightly) reduce the overall error.

In understanding this procedure, it helps to think of a high-dimensional space with a dimension for each weight.
This may be easiest to imagine for a network with only two weights. Each point in this space—a plane in two
dimensions—defines a set of weightsthat produces some amount of error if used by the network. If we represent this
error along an additional dimension corresponding to height, then the error values of all possible weight setsform an
error surface in weight space (see Figure 11). A good set of weights has low error and corresponds to the bottom of a
valley inthissurface. At any stagein learning, the network can be thought of as being at the point on the error surface
above the point for the current set of weights, with a height given by the error for those weights. Possible weight
changes consist of movementsin different directions along the surface. Changing each weight in proportiontoitserror
derivative amounts to moving in the direction of steepest descent. Often learning can be accelerated by using the error
derivatives in more complex ways in determining how far and in what direction to move in weight space, although
the issues regarding the application of these techniques can be separated from those concerning the calculation of the
error derivatives themselves.

The most widespread procedure for computing error derivatives in connectionist networks is back-propagation
(Bryson & Ho, 1969; le Cun, 1985; Parker, Note 8; Rumelhart et al., 1986a; 1986b; Werbos, Note 12). The power
and generality of back-propagation has dramatically extended the applicability of connectionist networksto problems
in awide variety of domains. However, this power also raises concerns about its appropriateness for the purposes
of modeling in cognitive psychology and neuropsychology. In particular, the procedure uses information in ways
that seem neurophysiologically implausible—a straightforward implementation of the procedure would require error
signals to travel backward through synapses and axons (Crick, 1989; Grossberg, 1987). As such, it seems unlikely
that back-propagation is what underlies human learning, and thus its use in modeling the results of human learning is
somewhat suspect.

Proponents of the use of back-propagation in cognitive modeling have replied to this argument in two ways. The
first isto demonstrate how the procedure might be implemented in a neurophysiologically plausible way (e.g., Parker,
Note 8). The more common reply, and the one adopted by H&S, is to argue that back-propagation is only one of
a number of procedures for performing gradient descent learning in connectionist networks. As such, it is viewed
merely as a programming technique for developing networks that perform atask, and is not intended to reflect any
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Figure 11: A hypothetical error surface for a network with two weights. The current error is plotted as a small box
above the point corresponding to the current values of the weights (Weight 1 = —0.7, Weight 2 = 0.3). The error for
the optimal set of weights (Weight 1 = 0.3, Weight 2 = —0.2) isa so plotted (as an asterisk). Gradient descent learning
involves modifying the current weights such that the point corresponding to their error moves downhill along this
surface, eventually arriving at the optimal point.

aspect of human learning per se (although see, e.g., Bates & Elman, in press; Elman, Note 1; Karmiloff-Smith, 1992;
McClelland & Jenkins, 1990; Plunkett & Sinha, 1991; Seidenberg & McClelland, 1989, for aternative views on the
relevance of connectionist modeling to issuesin cognitive development). The implicit claim is that back-propagation
develops representations that exhibit the same properties as would those devel oped by a more plausible procedure, but
doesit much more efficiently. However, thisclaim israrely substantiated by a demonstration of the similarity between
systems devel oped with alternative procedures.®

In this section, we attempt to replicate the main results obtained thus far with back-propagation, within the more
plausiblelearning framework of contrastive Hebbian learning in adeterministic Boltzmann Machine (DBM). Following
a brief description of the framework, we define an architecture for mapping orthography to phonology via semantics
similar to those used with back-propagation. After training the network, we compare its behavior under a variety of
lesions and with that of the back-propagation networks. In addition to being more plausible as a procedure that might
underly human learning, the DBM has interesting computational characteristics not shared by the back-propagation
networks. We conclude the section by demonstrating how these characteristics are useful for understanding two aspects
of deep dyslexic reading behavior: greater confidencein visual vs. semantic errors, and preserved lexical decision with
impaired naming.

Deter ministic Boltzmann M achines

Deterministic Boltzmann Machines (Peterson & Anderson, 1987; Hinton, 1989b) were originally devel oped as approx-
imations to stochastic Boltzmann Machines (Ackley et al., 1985; Hinton & Sejnowski, 1983). Details on the nature of
processing and learning in these networks are presented in an appendix—here we only summarize their characteristics.

InaDBM, the states of units change slowly over time, and all connections are bidirectional, so that settlingis much
more gradual and interactive than in the back-propagation networks. 1n addition, during settling the summed inputs to
units are divided by a global temperature parameter that starts high and is gradually reduced to 1.0—a process known

9Terry Sejnowski (personal communication) has successfully re-implemented NETtalk (Sejnowski & Rosenberg, 1987), a feed-forward back-
propagation network that maps orthography to phonology, as a stochastic Boltzmann Machine. However, he made no direct comparisons of the
representations that the two procedures devel oped.



as simulated annealing. At the end of settling, the unit states minimize a global energy measure which represents the
degree to which the constraints encoded by the weights are violated.

The training procedure, known as contrastive Hebbian learning, involves running the network twice for each
input. In the negative phase—roughly corresponding to the forward pass in back-propagation—the input units are
clamped, and the hidden and output unitsgradually settle into astable pattern of activity which representsthe network’s
interpretation of the input. In the positive phase—corresponding to the backward pass—both the input and output
units are clamped correctly, and only the hidden units update their states. Learning involves changing each weight in
proportion to the difference in the product of unit states for the positive and negative phases. Thisform of learning is
somewhat more biologically plausible than back-propagation primarily because information about the correct states of
output units is used in the same way as information about the input—that is, by propagating weighted unit activities,
rather than passing error derivatives backward across connections.

Both back-propagation and contrastive Hebbian learning can be characterized as performing gradient descent in
weight space in terms of an explicit measure of how well the network is performing the task. This has led most
researchers to assume that the nature of the representations developed by the two procedures in most tasks would be
qualitatively equivalent. However, the ways in which they compute weight derivatives based on unit states are quite
different. These differences raise the issue as to whether the lesion results we have obtained with back-propagation
arise only in networks trained with that powerful, rather implausible procedure. In order to investigate this issue,
we now define a version of the task of reading via meaning, and describe a DBM architecture for accomplishing it.
After training the network with contrastive Hebbian learning, we systematically lesion it and compare its impaired
performance with that of damaged back-propagation networks.

The Task

In order to help the DBM learn the structure between the input and output patterns (i.e. to reproduce the co-occurrences
of unit states), we will use a more symmetric version of the task of reading via meaning than was used with the
back-propagation networks. Specifically, the network will be trained to map between orthography and phonology via
semantics in either direction. This requirement can be broken down into three subtasks: (@) generate semantics and
phonology from orthography (b) generate orthography and phonology from semantics, and (c) generate semantics and
orthography from phonology. Although only the first subtask is strictly required for reading via meaning, training on
the other subtasks ensures that the network learns to model orthographic structure and its relationship to semanticsin
the sameway asfor phonological structure. Our use of atraining procedure that involves|earning to produce semantics
from phonology in addition to producing phonology from semanticsisin no way intended to imply atheoretical claim
that input and output phonology are identical—it is solely a way of helping the network to learn the appropriate
rel ationships between semantic and phonological representations. This is important if we want to use free energy to
compare the “goodness’ of each kind of representation. Also, learning the task in both directions should result in
stronger and more robust attractors, in a similar way as for the back-propagation networks with feedback connections
(80fb and 40-40fb). In order to make generating orthography as closely analogous as possibl e to generating phonology,
we usetheoriginal H& S representations for letters, involving a position-specific grapheme unit for each possible | etter
in aword.

The Network Architecture

Figure 12 depicts the architecture of a DBM for mapping among the orthography, semantics, and phonology. The
network has 40 intermediate units bidirectionally connected with the 28 grapheme units and 68 sememe units, and
another 40 intermediate units bidirectionally connected with the sememe units and 33 phoneme units. Each of these
sets of connections has full connectivity density. In addition, there is full connectivity within each of the grapheme,
sememe, and phoneme layers, except that units are not connected with themselves. In total, the network has 11,273
bidirectional connections. This is about twice the number of connections in one of the back-propagation networks.
This extra capacity is justified because contrastive Hebbian learning is not as efficient as back-propagation in using a
small number of weights to solve atask.
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Figure 12: The DBM architecture for mapping among orthography, semantics, and phonology.

The Training Procedure

The procedure used to train the DBM is exactly as described above and in the appendix, with a slight elaboration.
In order to train the network to perform each of the three subtasks mentioned previously, each presentation of a
word involved three negative phases. In the first of these, the grapheme units are clamped to the letters of the word.
The remaining units, including the sememe and phoneme units, then update their states (while the temperature is
concurrently annealed) until no unit state changes by more than 0.01. In the second negative phase, the semantics
of the word are clamped correctly, and the network settles into patterns of activity over the grapheme and phoneme
units. In the third, the phonemes of the word are clamped, and the network generates semantic and orthographic
representations. The pairwise products of unit statesin each of these negative phases are subtracted from the pending
weight changes. The positive phase involves clamping the grapheme, sememe, and phoneme units appropriately, and
computing states for the two layers of intermediate units.® In order to balance the three negative phases, the products
of unit statesin the positive phase are multiplied by three before being added into the pending weight changes. These
pending changes are accumul ated for each word in turn, at which point the weights are actually changed (using aweight
step ¢ = 0.01 and no momentum) and the procedure is repeated.’* After slightly more than 2100 sweeps through the
word set, the state of each grapheme, sememe, and phoneme unit was within 0.2 of its correct states during each of the
three negative phases.

In order to provide a sense of the behavior of the trained network in processing a word, Figure 13 displays the
states of the unitsin the network at various times during the negative phase in which the orthography of the word RAT
is presented. Because the temperature parameter is very high for the first iterations, most (non-input) unit states are
near zero. Gradually, unitsin the first intermediate layer start to become active due to direct orthographic input. By
around iteration 30, this initial activity begins to generate semantic activity, which in turn generates activity in the
output half of the network by iteration 35. Because only three of the 33 phoneme units should have a positive state
for any given word, these units have a strong negative biases, producing negative states at iteration 40. Semantics
continues to improve, although it is still far from the correct semantics for RAT, as shown by comparison with the
states for the last iteration. Close inspection reveals that the erroneous semantic features are due to contamination

10No settling is required in the positive phase because all of the connections of both sets of intermediate units are from units that are clamped, so
the summed input to each intermediate unit is constant. In this case, the final states that these units would ultimately achieve if settling were used
can be computed directly using no cascading nor temperature in their update functions (i.e. A = 0and 7' = 1 in Equation 1 in the appendix).

11 Although the current simulations involve batch learning, in which all 40 words are presented before changing the weights, online learning, in
which the weights are updated after every word presentation, would have been equally effective.
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Figure 13: The states of the DBM at selected iterations in processing the word RAT. Each row of the display for an

iteration represents a separate layer of units, with grapheme units at the bottom, sememe unitsin the long middle row,

and phoneme units at the top. The second and fourth rows are the input and output intermediate units, respectively.
The state of each unit is represented by the size of a black (for negative) or white (for positive) blob. A grey square

indicates that the unit has a state near zero. Thus, the bottom (orthographic) row for each iteration has three white

squares, corresponding to the three graphemes of RAT that are clamped on throughout settling.
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with the features for CAT. However, even before the semantic pattern settles completely it begins to activate the
appropriate phonemes—first the vowel around iteration 50, and then the consonants. Between iterations 60 and 75, the
phoneme units clearly settle into the correct pronunciation. Interestingly, some semantic features are still undecided or
incorrect at this state (e.g., the two leftmost features, relating to size). The correct phonology feeds back to semantics
to provide additional clean-up, and by iteration 100 all of the semantic features are in their correct states. In this
way, the DBM behaves quite differently from networks that map from orthography to phonology via semanticsin a
strictly feed-forward manner (i.e. al the back-propagation networks without feedback connections). Having learned
to map between semantics and phonology in both directions, it takes advantage of their interaction to settle into the
correct representations for each. The settling behavior of the DBM when presented with other words is qualitatively
similar, although it should be pointed out that, in general, phonology comes in much later than semantics (see Plaut,
Note 10, for details). Thisalso applied to RAT in that most of the correct semantic features are active prior to the correct
phonemes.

In comparing the training and operation of the DBM with that of the back-propagation networks, it isimportant to
keep in mind that processing one word in the DBM requires about 40 times more computation.? On the other hand,
the DBM has the significant advantage that it was trained all at once—back-propagation networks had to be trained
incrementally, using a rather ad hoc procedure in the case of the output networks (see the section on “Generating
Phonological Responses’). In addition, the DBM is performing a more complex task by learning to map between
orthography and phonology in either direction. However, our major interest is to compare the effects of damage on
behavior of these two types of network in reading via meaning rather than the time required to learn the task per se.

The Effects of Lesions

After training, each of the sets of connectionsin the DBM were subjected to 20 instances of lesions over the standard
range of severity. We also subjected the semantic units to lesions of the same range of severity, in which the
appropriate proportion of semantic units are selected at random and removed from the network. Sincewe are primarily
concerned with the task of generating semantics and phonology from orthography, we only considered behavior in the
negative phase in which the grapheme units are clamped. For each lesion, correct, omission, and error response were
accumulated according to the same criteria as used for the back-propagation networks.

Figure 14 presents the overall correct rates of performance of the DBM, for lesions throughout the network.
Compare these results with the correct performance data for the corresponding lesions to the full semantic route
implementation using back-propagation (based on the 40-60 network; see Figure 9). Considering input lesions first,
I< s lesions are equally debilitating in the two networks, but the DBM is more robust to G< I lesions than the
back-propagation network isto 0=1I lesions. Asaresult, the standard order of severity of impairment along the direct
pathway is reversed in the DBM. A comparison of clean-up lesions is complicated by the differencesin architecture:
the back-propagation network has a clean-up pathway, whilethe DBM has only intra-sememe connections. In general,
S<s lesions in the DBM impair performance about as much as ¢=-S in the back-propagation network. And for both
networks, lesions to the semantic units themselves are far more debilitating than lesions to the connections among
them, particularly in the DBM.

Asfor output lesions, the DBM is somewhat less robust than the back-propagation network to S<Ip lesions, but,
in general, direct pathway lesions affect the two networks similarly. Phonological clean-up lesionsin the two networks
result in similar behavior as well, producing a sharp decline in correct performance with increasing lesion severity.

An interesting characteristic of the DBM is that it tends to settle into unit states that are very close to +1, even
under damage. Thisresultsin very clean phonological output when it responds. Considering the phonological output
criterion, the wor st phoneme has a probability above 0.8 for aimost all correct and omission responses, while very few
are above this level for the back-propagation network. In addition, the large majority (90.8%) of omissions fail the
requirement that exactly one phoneme be active—no phoneme is active in 87.2% of these. Only 9.2% of omissions
fail because of the criterion of aminimum slot response probability of 0.6 for responses. Thus, the phonological output
criterion could be eliminated entirely without substantially altering the results with the DBM.

Figure 15 presents the distribution of error typesfor each lesion location of the DBM, averaged over severities that
resulted in correct performance between 15-85%. Comparing with results for input lesions to the back-propagation

12We can approximate the computational demands of presenting aword during learning by the number of connections x the number of phases
x the number of iterations per phase. The DBM has about twice the number of connections and requires four phases, compared with two for a
back-propagation network (the forward and backward passes). |n addition, the DBM requires about 10 times more iterations to settle (about 150 vs.
14 for one of the back-propagation networks).
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Figure 14: Overall correct performance of the DBM after (a) input and central lesions, and (b) output lesions.
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network (shown in Figure 10), the DBM is producing about 4-8 times higher error rates. In fact, the distribution of
error typesis quite similar for the latter network and the DBM. Both show a very high proportion of visua errors for
lesions to input pathways. Furthermore, like the back-propagation network, the DBM shows very low rates of blend
responses. Thisis interesting because, unlike in the development of the back-propagation output network, no special
effort was made to prevent blends in the design or training of the DBM. Their absence appears to be a natural and
encouraging consegquence of the nature of the attractors developed by the DBM.

The error pattern for central lesions (S<S and S units) is quite similar to the pattern for input lesions. Lesioning
the semantic units produces a higher overall error rate (25.6%) than lesioning the connections among them (19.6%),
but the largest increase is among other errors. Also, in the DBM these lesions don’t produce the same strong bias
towards semantic similarity in errors as they do in the back-propagation network.

The pattern of error ratesfor output lesionsto the DBM isquitedifferent from that for the back-propagation network.
The error rates for lesions to the direct pathway of the DBM (S<Ip and Ip<P) are lower than for input lesions, and
less biased towards visual errors. In addition, the DBM produces far fewer other errors than the back-propagation
network. Perhaps more striking, phonological clean-up lesions in the DBM (P« P) till produce significant error
rates, fairly evenly distributed across type, while the analogous lesions in the back-propagation network (P=-Cp and
Cp=P) produce virtually no error responses. With phonological clean-up damage, the DBM can use the bidirectional
interactions with the intermediate units as a residual source of clean-up. This redundancy of clean-up is similar to that
of the hybrid 40-40fb network.

All lesion locationsin the DBM show amixture of error types, and their ratios with the other error rates are higher
than for randomly chosen error responses. In addition, the rates of mixed visual-and-semantic errors are higher for all
lesion locations than expected from the independent rates of visua errors and semantic errors (although only slightly
so for central lesions). Thus, the DBM replicates the main H& S results.

The similarity of the results produced by input lesions to the DBM with those produced by the back-propagation
network lends credence to the notion that the strength of the attractors for words is a much more important factor in
determining the pattern of results than is the procedure by which those attractors are devel oped. However, learning in
the DBM devel ops strong attractors naturally, without the need for incremental training with noisy input. Furthermore,
the interactive nature of processing in the DBM makes alarge difference for lesions at the phonological level. Unlike
the back-propagation output network, the DBM can fall back on bidirectional interactions with semantics (via the
intermediate units) to provide clean-up that can partially compensate for lesions to intra-phoneme connections.

In addition to these computational advantages of the DBM, there are some aspects of the reading behavior of
deep dyslexic patients that are much more effectively addressed using a network that has a well-defined measure of
the goodness of representations. Two examples of this are the differences that some patients show in the relative
confidence they have in some types of error responses, and the relative preservation of ability to distinguish words
from nonwords.

Confidencein Visual vs. Semantic Errors

Patterson (1978) found that deep dyslexic patients DE and PW were more confident that their visual error responses
were correct as compared with their semantic error responses. It is difficult to interpret these results because it is hard
to know how to operationalize the notion of “confidence” in aresponse. One possible interpretation is that a lack of
confidence arises when the system takes a long time to settle, or settlesinto relatively poor representations.

Figure 16 presents distributions of the number of iterationsrequired to settlefor correct responses, omissions, visual
errors, and semantic errors produced by lesions to the DBM that resulted in correct performance between 15-85%.
Not surprisingly, word presentations producing correct responses tend to settle most quickly. What is surprising isthat
the network takes longer on average to settle into an error response than an omission. However, remember that over
90% of omissions arise because no phonemeis active in some slot. Apparently the network is quick to turn off all the
phoneme unitsin a dot if none of them receive sufficient support from the intermediate units as a result of damage.
Accumulating enough support to fully activate a phoneme unit in each slot (and inhibit all others) often requires many
more iterations. The two error types also show the most variability in settling time. While there is a high degree
of overlap between the two distributions, on average visual errors settle more quickly (mean 127.2 iterations) than
semantic errors (mean 139.4 iterations, F'(1,4458) = 56.8, p < .001). Thus, increased settling time for semantic
errors might account for patients’ reduced confidence that these error responses are correct.

Another possible contribution to the confidence that patients have in their responses is the degree to which the
system settles into “good” representations, defined to be those with low energy. We compared visual and semantic
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Figure 16: Distributions of the number of iterations to settle for correct responses, omissions, visua errors, and
semantic errors produced by the DBM under damage.

errors in terms of their energy in different parts of the network. Considering the energy in the sets of connections
between semantics and phonology (S<>Ip and Ip<-P), visual errors have lower energy than semantic errorsin the
DBM (means —214.2 visual vs. —211.6 semantic, F'(1, 3456) = 25.0, p < .001). Thiswas true after both input and
output lesions. In contrast, for the sets of connections between orthography and semantics, there was no difference
between the energy for visual vs. semantic errors (#'(1, 2647) = 1.4). Thus, differencesin energy can account for the
increased confidence that some deep dyslexic patients have in visual as compared with semantic errors only under the
assumption that their judgment is based on the energy between semantics and phonology.

Lexical Decision

Even when they are unabl e to read words, most deep dyslexic patients can often distinguish them from orthographically
regular nonwords. Coltheart (1980a) lists nine of the 11 cases of deep dyslexia for whom there was data as being
“surprisingly good” at lexical decision. For example, Patterson (1979) found that both DE and PW were near perfect
at distinguishing function words from nonwords that differed in a single letter (e.g., wiTH, WETH), whereas explicit
correct reading performance on the words was only 38% for DE and 8% for PW In a more difficult test involving 150
abstract words, again paired with nonwords differing by a single letter (e.g., ORIGINATE, ORIGILATE), DE produced a
d' score of 1.74; d’ was 2.48 for PW. By comparison, d’ was 3.30 for normal age-matched controls. DE read only 19
of the 150 words correctly (12.7%), while PW read only 31 (20.7%). Thus, PW shows almost normal lexical decision
performance with words he has difficulty reading; DE’s performance is significantly impaired but still much better
than chance (d' = 0).

Hinton and Shallice (Note 5) attempted to model preserved lexical decision under conditions of poor explicit reading
performance in the following way. They constructed two sets of “nonword” stimuli with equivalent orthographic
structure to the words (see Table 7). The nonwordsin the close set were created by changing a single letter of one of
the words; those in the distant set differed from every word by at least two letters. The two sets are matched in the
frequency with which particular letters occur at particular positions, but not with respect to theword set. 1t isimportant
to note that these stimuli are “nonwords’ in the sense that they are unfamiliar to the network—it has not learned to
associate them with any semantics. The fact that many of them are, in fact, English words (e.g., DONE) isirrelevant to
the network’ s behavior.

H& S modeled the task of lexical decision by changing the criteria used to generate responses. Specifically, a
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Table 7: The “nonwords’ used in the lexical decision simulation.

Close Distant
BUD  GEG LIM PP BERK GAG LUR  PET
BUT GIM MED POCK BIT GAP MOB PICK
CAR HACK MUT RAB CICE HUB MOM REN
DEN HARK NAT ROR DAP  HUR NOD RUNK
DONE LIB NUG TOP DIT LAD NOM TAG

stimulus was accepted as aword if the proximity of the generated semanticsto the nearest familiar semantics exceeded
0.7, ignoring the gap between this and other matches. The rationalefor using areduced proximity criterion and no gap
criterion isthat the semantic match required to indicate that the stimulus is aword needn’t be as precise as the match
required to specify a particular word for explicit naming. However, when this procedure was applied to the responses
generated by the network after damage, there was little difference between words and nonwords. For example, for a
lesion of G=-1(0.4), which produces 18% explicit correct performance, 67.3% of wordswere accepted, while 55.5% of
close nonwords and 64.0% of distant nonwordswere incorrectly accepted aswords (d’ = 0.31 and 0.09, respectively).
For I=-5(0.2) lesions (21.5% correct performance), 57% of words, 39% of close nonwords, and 45% of distant
nonwords were accepted as words (d’ = 0.46 and 0.30, respectively). Thus, H& S failed to demonstrate preserved
lexical decision performance in their network when explicit correct performanceis poor.

In the context of modeling the non-semantic route from orthography to phonology, Seidenberg and McClelland
(1989) argue that, under some circumstances, normal subjects can perform lexical decision solely on the basis of
orthographic or phonological familiarity. In their model, orthographic familiarity is defined as the degree to which
a letter string (word or nonword) can be re-created from the internal representation it generates, measured in terms
of an orthographic error score. Phonological familiarity as a basis for lexical decision is more problematic as it
depends on the ability of the network to generate the correct pronunciations of both words and nonwords, which at
least for nonwords is less than satisfactory (Besner, Twilley, McCann, & Seergobin, 1990). Nonetheless, Seidenberg
and McClelland demonstrate that words tend to have lower orthographic error scores than do orthographically regular
nonwords, and hence their undamaged model is capable of distinguishing most words from nonwords on the basis of
orthographic familiarity.

These results suggest that some measure of orthographic familiarity in the DBM network might provide abasis for
lexical decision. The DBM network was given connections among grapheme units and trained to generate orthography
from semantics so that it would learn the orthographic structure among words in the same way as for semantic and
phonological structure. However, if the network is to be required to actually re-create orthography, we cannot present
input by clamping the grapheme units into their correct states as in previous simulations.’® Rather, we must provide
the grapheme units with external input and require them to update their states in the same way as other unitsin the
network. This isthe same soft clamping technique that was used to train the phonological clean-up pathway of the
back-propagation output network. Specifically, we presented aletter string to the network by providing each grapheme
unit with fixed external input sufficient to generate a state of 0.9 if its desired state was 1, or —0.9 if its desired state
was —1. Theinitial states of grapheme units were set to 0.0 and updated over iterations just like the rest of the units
in the network. The external input to grapheme units does not uniquely determine their final states because they also
receive input from each other and from semantics via the intermediate units throughout the course of settling.

We used as ameasure of familiarity of aletter string the proximity between the desired states of the grapheme units
and their final states after settling when presented with the letter string as external input. We will refer to this measure
as orthographic/semantic familiarity because it reflects the consistency of a letter string with both of these types of
knowledge. The undamaged network produces an orthographic/semantic familiarity greater than 0.995 (maximum
1.0) for 35 of the words—it fails on CAN, MAT, DOG, HAM and Hock.** By contrast, only three of the nonwords, all in
the close set, are considered this familiar: DONE, MED and PIP. This performance yieldsa d’ = 2.59 if this measure

133eidenberg and McClelland (1989) avoid this issue by training their network to regenerate orthography over a separate group of orthographic
units from the ones used to present input.

14These misses reflect the fact that the network was not trained with soft clamping—during training the grapheme units are clamped to their
correct states through settling. Training the network with soft clamping would have eliminated these misses without substantially affecting the other
results presented in this section.



and criterion were adopted in alexical decision task.

If the network is damaged, the support that words receive from semantics is somewhat degraded and so we would
expect the differences between words and nonwordsto bereduced. However, the network remainsableto fairly reliably
distinguish nonwords from words it cannot read. Averaging acrossall lesion locations and severities producing correct
performance between 15-85%, and only including word trial s producing errors or omissions, an orthographi c/semantic
familiarity criterion of 0.995 yieldsa d’ = 2.08 overall (close: 1.66, distant: 3.02). Lexical decision is much better
for words producing omissions (¢’ = 2.49) than those producing errors (d' = 1.31). Also, performance improves as
lesions are located further from orthography (4’ for input lesions: 1.36, central lesions; 2.12, output lesions: 2.31).
Thus, like most deep dyslexic patients, the damaged network is able to distinguish words from nonwords even it cannot
read the words.

Summary

Thelesion experimentsin this section attempt to servethree major purposes. Thefirstisto demonstrate the generality of
the H& Sresults across networks devel oped with very different learning procedures. The secondisto support the use of
back-propagation in cognitive modeling against criticisms based on its biological implausibility by providing evidence
that the representationsit devel ops have qualitatively similar propertiesto those devel oped with more plausiblelearning
frameworks. The third is to illustrate how certain additional aspects of these alternative frameworks are particularly
useful in understanding some additional characteristics of deep dyslexia—specifically, greater confidence in visual
errors, and preserved lexical decision with impaired naming.

The primary focus of the simulations presented in the paper thus far has been on demonstrating and understanding
the degreeto which the replication of deep dyslexic reading behavior in lesioned attractor networks depends on various
aspects of their design. However, in many ways the empirical limitations of the original H& S model are more severe
thanitscomputational ones. Only the most basi ¢ aspects of the syndromeweremodel ed: the co-occurrence of semantic,
visual, and mixed visua-and-semantic errors. Our simulations have extended the range of empirical phenomena that
have been addressed to include additional error types, confidence ratings, and lexical decision. However, there are
fundamental characteristics of the patients' reading behavior, such as effects of word imageability/concreteness and
part-of-speech, that remain unaccounted for. These aspects of deep dyslexia simply could not be addressed using the
H& S word set, which only contains concrete nouns. The next section presents simulations that attempt to overcome
these limitations and extend the empirical adequacy of attractor networks for modeling deep dyslexia.

Extending the Task Domain: Effects of Abstractness

Thefinal aspect of the H& S model that we investigate is the definition of the task of reading via meaning. Defining a
task for a network involves choosing a set of input-output pairs to be presented to the network, as well as specifying
how these are represented as patterns of activity over groups of units. Formulating a reasonable task definition for
the purposes of modeling human behavior involves a trade-off between being as faithful as possible to what is known
about the nature of representations from empirical work, while remaining within the often severe constraints imposed
by the available computational resources.

First and foremost, the task that the network performs must adequately approximate the task faced by subjects,
or the network’s behavior, however interesting in its own right, will have little relevance to understanding human
behavior. However, exactly what constitutes “ adequate” isvery much amatter of debate. In essence, the decisions that
are made in creating asimplified version of the task for the network constitute empirical claims about what aspects of
theinformation available to subjectsis crucial for understanding their behavior. While our empirical understanding of
the nature of how different types of information are represented provides useful constraints, it remains insufficiently
detailed to specify the precise representations of each input-output pair as patterns of activity over groups of units.
Thisis where computational considerations of what types of representation networks find easy or difficult to use come
into play.

The main computational limitationsin specifying atask stem from the fact that thetimeto train anetwork increases
with the size of the network and the number of examplesit istrained on. Thus, thereis strong pressure to use as few
units as possible to represent the input and output, and to keep the size of the training set within reasonable limits.
For tasks with considerable statistical structure among examples, such as mapping orthography to phonology, it may
be necessary to use a large number of training cases in order to guarantee good performance on novel inputs. For



tasks involving unrelated associations, such as mapping orthography to semantics, it may be sufficient to use a small
number of examples. However, adrawback of using asmall training set isthat it becomes difficult to include all of the
types of variations among examples that are empirically relevant. The fact that the H& S model was trained on only
40 words is aserious limitation, not so much because the nature of the mapping from orthography to semanticswould
be fundamentally different if more words were involved, but that only the most general semantic distinction, category
membership, could beinvestigated. The influences of many other variables known to affect patients’ reading behavior
were not examined.

In particular, a distinction among words known to have a significant effect on reading in deep dyslexia is their
imageahility or concreteness. This issue could not be addressed using the original H& S word set because it contains
only concrete nouns. The purpose of this section is to demonstrate that the approach taken by H& S can be extended
to account for additional detailed characteristics of deep dyslexic reading behavior, relating to the effects of the
abstractness/concreteness of stimuli and responses, and interactions with visual influences in errors.!®

Effects of Abstractnessin Deep Dyslexia

The effect of the abstractness of the stimulus on deep dyslexic reading has been investigated in a number of ways.
The most basic is its effect on the probability that a word will be read correctly. Coltheart et al. (1987) claim that all
patients who make semantic errors find concrete words easier to read than abstract ones. In many patients avery large
difference is observed: 73% vs. 14% for KF (Shallice & Warrington, 1975), 67% vs. 13% for PW and 70% vs. 10%
for DE (Patterson & Marcel, 1977).

A more subtle effect isthe way that the concreteness of aword can affect the probability of the occurrence of visual
errors. Shallice and Warrington (1975) noted in their patient KF that the responses tended to be more concrete than the
stimuli when visual errors were made. This has since also been observed in patients BL (Nolan & Caramazza, 1982)
and GR (Barry & Richardson, 1988); patient PS (Shallice & Coughlan, 1980) showed a strong trend (p < .06) in the
same direction. The same effect is aso apparent in the corpus of errors made by PW and DE (see Coltheart, Patterson,
& Marshall, 1980, Appendix 2). The relative concreteness of the stimuli on which different types of responses occur
has been investigated in three patients. In two, PD (Coltheart, 1980b) and FM (Gordon et al., Note 4), visua errors
occurred on less concrete words than did semantic errors, while in GR (Barry & Richardson, 1988) there was no
significant difference. Finally, in two patients visual errors occurred significantly more often for stimuli less than a
certain level of concreteness by comparison with more concrete stimuli (KF (Shallice & Warrington, 1980) C' < 6 vs.
C > 6; PS (Shallice & Coughlan, 1980) C' < 4.6 vs. C' > 4.6). Thus, a semantic variable—concreteness—clearly
influences the nature of visual errors.

There is a single known exception to the advantage for concrete words shown by deep dyslexic patients: patient
CAV with concrete word dyslexia (Warrington, 1981). CAV failed to read concrete words like MILK and TREE but
succeeded at highly abstract words such as APPLAUSE, EVIDENCE, and INFERIOR. Overall, abstract words were more
likely to be correctly read than concrete (55% vs. 36%). In complementary fashion, 63% of hisvisual error responses
were more abstract than the stimulus. However, the incidence of visual errors was approximately equal for words
above and below the median in concreteness. While CAV made no more semantic errors than might be expected
by chance (see Ellis & Marshall, 1978), he appeared to be relying at least in part on the semantic route because his
performance improved when given aword’ s semantic category. CAV isclearly avery unusual patient, but any account
of the relation between visual errors and concreteness can hardly ignore him.

A Semantic Representation for Concrete and Abstract Words

The type of semantic feature representation used by H& Sis quite similar to that frequently employed in psychological
theorizing on semantic memory (e.g., Smith, Shoben, & Rips, 1974; Smith & Medin, 1981). More complex represen-
tations, such as frames (Minsky, 1975), can be implemented using this approach if units can represent a conjunction of
arole and a property of what fillsit (Derthick, 1990; Hinton, 1981). More critically for the present purpose, thereis a
natural extension to the problem of the effects of imageability/concreteness. Jones (1985) has argued that words vary
greatly in the ease with which predicates about them can be generated, and that this measure reflects a psychologically
important property of semantic representation. For example, more predicates can be generated for basic-level words
than for subordinate or superordinate words (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). Jonesshowed that
there isavery high correlation (0.88) between a measure of ease-of-predication and imageability, and that the relative

15A condensed description of the major results of this section can be found in Plaut and Shallice (1991).
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Table 8: Twenty concrete-abstract word pairs used in the simulation.

TART  TACT GRIN GAIN FLAN  PLAN REED NEED
TENT  RENT LOCK LACK HIND HINT LOON LOAN
FACE FACT ROPE ROLE WAVE WAGE CASE EASE
DEER DEED HARE HIRE FLEA PLEA FLAG FLAW
COAT COsT LASS LOSS STAR STAY POST PAST

difficulty of parts-of-speech in deep dyslexia maps perfectly onto their ordered mean ease-of-predication scores. He
argued that the effects of both imageability and part-of-speech in deep dyslexia can be accounted for by assuming that
the semantic route is sensitive to ease-of-predication. Within the present framework, the natural way to realize this
distinction is by representing the semantics of concrete and abstract words in terms of differing numbers of features.

A dlightly different position is that taken by Schwartz, Marin, and Saffran (1979), “A concrete word—a reference
term like ‘' rose’ —has a core meaning little altered by context (aroseisarose) . . .. The meanings of abstract words, on
the other hand, tend to be more dependent on the contexts in which they are embedded” (see Shallice, 1988a, p. 106).
A similar contrast appears to hold between nouns and verbs—another category deep dyslexic patients find difficult.
Indeed, Gentner (1981) shows that verbs are broader in meaning, are more mutable under paraphrase, and vary morein
retranslation through some other language. Presupposing that verbs and abstract nouns contrast with concrete nounsin
asimilar fashion, this would correspond to their having less features that are consistently accessed. If a connectionist
learning procedure were applied in anetwork for generating phonol ogical responsesfrom such representations, it would
cometo rely onfeaturesthat are consistently present. Therefore, on thisapproach, an appropriatefirst approximationto
how the contrast between abstract and concrete words would be realized in a connectionist network is to use semantic
representations which differ considerably in their number of features.

To examine the effect of concreteness on visual errors, aset of 20 abstract and 20 concrete words were chosen such
that each pair of words differed by asingle letter (see Table 8). We represented the semantics of each of these wordsin
termsof 98 semantic features, listed in Table 9. Thefirst 67 of these arebased onthe H& S semantic featuresfor concrete
words (e.g., main-shape-3d, found-woods, living) with minor changes being made to accommodate the different range
of meanings in this word set. The remaining 31 features (e.g., has-duration, relates-location, quality-difficulty) are
required to make distinctions among abstract words, but occasionally apply to concrete words aswell. The ordering of
the features, and in particular, the separation of concrete and abstract features, isirrelevant to the simulation. Figure 17
displays the assignment of semantic features to words. Concrete and abstract words differ systematically in their
semantic representations: concrete words have an average of 18.2 features while abstract words have an average of
only 4.7 features. The similarity matrix among semantic representations, shown in Figure 18, clearly illustrates that
there is a range of similarities among concrete words and among abstract words, but very little similarity between
these two groups of words. We do not claim that this representation adequately captures the richness and subtlety of
the true meanings of any of these words. Rather, we claim that it captures important qualitative distinctions about the
rel ationships between word meanings—namely, that similar words (e.g., LACK and LOSS) have similar representations,
and that there isa systematic difference between the semantics of concrete and abstract wordsthat reflectstheir relative
ease-of-predication.

A network that maps from orthography to phonology via semantics will be developed incrementally, as for the
network described in the section on “ Generating Phonological Responses.” An input network, analogous to the H& S
model, will be trained to map from orthography to semantics. A similarly structured output network will be trained
separately to map from semanticsto phonology. These two networks will then be combined into the compl ete network,
shown in Figure 19.

Mapping Orthography to Semantics

The task of the input network is to generate the semantics of each word from its orthography. Orthography is
represented using the same eight feature distributed code used previously (see Table 3). The architecture of the input
network, shown in the bottom half of Figure 19, is broadly similar to the H& S network except that it has (a) full rather
than partial (25%) connectivity density, (b) fewer intermediate units (10 vs. 40) and clean-up units (10 vs. 60), (c)
no interconnections among semantic units, and (d) a feedback pathway from the semantic units to the intermediate
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Table 9: Semantic features for the concrete and abstract words.

CQOWoO~NOUA,WNPE

gwwwwI\)I\JI\)I\)I\)I\)I\)I\)NI\)I—‘I—‘I—‘I—‘I—‘I—‘I—‘I—‘I—‘I—‘
WNPOOONODUORWNRPOOONOOUOUAWNE

max-size-less-foot
max-size-foot-to-two-yards
max-size-greater-two-yards
main-shape-1D
main-shape-2D
main-shape-3D
cross-section-rectangular
cross-section-circular
cross-section-other
has-legs

has-arms
has-neck-or-collar

white

brown

color-other-strong
varied-colors

dark

hard

soft

sweet

moves

indoors

in-kitchen

on-ground

on-surface
otherwise-supported
outdoors-in-city
in-country

found-woods
found-near-sea
found-near-streams
found-mountains
found-on-farms
found-in-public-buildings

35
36
37
38
39

ERE5ERERERSE

49
50
51
52
53

55
56
57
58
59
60
61
62
63

65
66
67

found-in-transport
found-in-factories
surface-of-body
above-waist

natural

mammal

bird

wild

does-fly

does-swim

does-run

living

carnivore

plant

made-of-metal
made-of-liquid
made-of-other-nonliving
got-from-plants
got-from-animals
pleasant

unpleasant

dangerous

man-made

container
for-eating-drinking
for-wearing

for-other
for-lunch-dinner
particularly-assoc-child
particularly-assoc-adult
used-for-games-or-recreation
human

female

68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

positive

negative
no-magnitude
small

large
measurement
superordinate
true

fiction
information
action

state

has-duration
unchanging
involves-change
temporary
time-before
future-potential
relates-event
relates-location
relates-money
relates-possession
relates-work
relates-power
relates-reciprocation
relates-request
relates-interpersonal
quality-difficulty
quality-organized
quality-bravery
quality-sensitivity
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Figure 18: The similarity matrix for the semantic representations of words.
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Figure 19: The network for mapping orthography to phonology via semantics. The additional recurrent connections
at the intermediate and clean-up layers in the output network were intended to facilitate the development of strong
phonological attractors.

units. In this sense it is something of a hybrid of the 10-15d and 40-40fb networks.’® The general motivation for
these changes was to encourage the network to develop stronger semantic attractors while keeping the number of
connections reasonable.

The input network was trained with back-propagation to activate the appropriate semantic units for a word when
presented with the word’ s orthography corrupted by independent gaussian noise with mean 0.0 and standard deviation
0.1. After 4700 sweepsthrough the training set, the state of each semantic unit was accurate to within 0.1 over the last
three of eight iterations for each word.

Mapping Semantics to Phonology

The beginning of the section on “ Generating Phonological Responses’ discusses why it is important to develop an
output network to replace the H& S response criteria. The central concern in that section was on demonstrating the
validity of the criteria as approximations to the behavior of an actual output network. An even more pressing issue
for the present purposes is that the criteria are insensitive to the relative semantic and phonological discriminability
of words. Given the design of the word set, a systematic difference in the phonological similarity of concrete vs.
abstract words is highly unlikely, but a systematic bias in semantic similarity would be expected. Any differences
found in performance on concrete and abstract words might simply be due to an inherent bias of the response criteria
applied to semantics. For thisreason, it isimportant to use a phonological output network to generate responses rather
than use proximity/gap criteria. We are then guaranteed that systematic differences observed under damage are due to
properties of the network rather than properties of an external procedure for interpreting the output.

The word set requires a somewhat more complicated phonological representation than the one used for the H& S
word set. Phonology is represented in terms of seven sets of position-specific, mutually-exclusive phoneme units.
These groups consist of three slots for phonemes from the initial (onset) consonant cluster, one slot for the vowel,
and three dlots for phonemes from the final (coda) consonant cluster. The allowable phonemes for each dot, and the
resulting phonological representation for each word, are given in Table 10. Each of the six consonant slots includes a
unit for the null phoneme in order to explicitly represent the absence of any phoneme at that slot in the pronunciation
of aword. As a result, the representation of every word has exactly one active unit in each dlot. A total of 66
phoneme units are required to represent the pronunciations of all 40 words. As suggested earlier, thereis no significant

1A second input network, with the same architecture as the 40-40fb network, produced qualitatively similar results as the network described
here.
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Table 10: Phonological representations of the concrete and abstract words.

(a) Phonemes allowed in each position.

Pos. Phonemes
1 s -
2 bchddy f ghkmnpshtvz-
3 1 rwy -
4 aa air ar awe ee eer ewi ieire o oa ow u uu
5 |l mns -
6 bdjfgkpshtvz-
7 stz -

(b) Assignment of phonemesto words.
TART /-t - ar -t -/ TACT [/-t- a -kt/
TENT /-t - e nt -/ RENT /--r1 € nt -/
FACE /- f - ai s--/ FACT [-f- a -kt/
DEER /-d- eer - - -/ DEED /-d- ee -d-/
coarT /-k- oa -t-/ costT /-k- o st -/
GRIN [-gr i n- -/ GAIN /- g- ai n- -/
Lock /--1 o -k-/ LACK [--1 a -k-/
ROPE /[/--r1r oa -p-/ ROLE /[/--r oa | --/
HARE /- h- air ---/ HIRE [/-h- ire ---/
LASS /--1 a s--/ Loss /--1 o s--/
FLAN /- f1l a n- -/ PLAN /- pl a n- -/
HND /-h- ie nd-/ HINT /- h- i nt -/
WAVE /- - w ai -v-/ WAGE /- - w ai - -1
FLEA /- fl ee - --/ PLEA /- pl ee - - -/
STAR /st - ar - - -/ STAY /st - ai -- -/
REED /--r ee -d-/ NEED /-n- ee -d-/
LOON /--1 ew n--/ LOAN /--1 oa n--/
CASE /- k- ai s--/ EASE /--- ee z--/
FrAG /-fl a -g-/ Fraw /- f1 aw - - -/
PpOST /-p- oa st-/ PAST /-p- a st -/

Note. The letter(s) used to represent phonemes are not from a stan-
dard phonemic alphabet but rather are intended to have more intuitive
pronunciations. A “- " stands for the “null” phoneme.
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difference in the average pairwise proximity among the phonological representations of concrete vs. abstract words
(mean pairwise proximity: concrete 0.4, abstract 0.42; ¢(378) = 1.41, p = .16). Thus, any systematic differences
between concrete and abstract words are unlikely to result from phonological differences between the word classes.

The task of the output network is to generate the phonological representation of each word from its semantic
representation. The architecture of this network, shown in the top half of Figure 19, was designed to facilitate the
development of strong phonological attractors. Each major pathway shown hasfull connectivity density, and phoneme
units in the same consonant or vowel cluster are fully interconnected. This connectivity allows units within a slot to
develop awinner-take-all strategy while still cooperating with unitsin other slotswithin the same cluster. Coordination
and competition between clusters can only be accomplished via the clean-up units.

Aswith the output network for the H& S word set, the current output network was trained in away that maximizes
the strength of the attractors it develops, without regard for how well this approximates human speech development.
Specifically, the direct pathway from semantics to phonology was trained to produce the correct phonemes of each
word during the last two of five iterationswhen presented with its semantics corrupted by gaussian noise with standard
deviation 0.1. After about 3000 sweeps through the training set, the activity of each phoneme unit was accurate to
within 0.2 of its correct value for each word. At this point, intra-phoneme connections and the clean-up pathway were
added and the amount of input noise was increased to 0.2. In thisway the clean-up pathway learned to compensate for
the limitations of the direct pathway when pressed by severely corrupted input.l” The network was trained to produce
the correct phonemes over the last three of eight iterations to within 0.1 of their correct values. The amount of noise
prevented the network from achieving this criterion consistently, and after 18,000 training sweeps performance had
ceased to improve. However, the network easily satisfied the criterion for every word given uncorrupted input.

The output network was then combined with the input network to produce a network that maps from orthography
to phonology via semantics. In order to ensure that the output network would operate appropriately with its input
generated by the input network, the compl ete network was given additional training at generating the correct phonology
of each word over the last 3 of 14 iterations when given the uncorrupted orthography of the word. The weights of the
input network were not allowed to change during training to ensure that it continued to generate the correct semantics
of each word. Thisfinal training required less than 100 sweeps through the words.

The Effects of Lesions

After training, the complete network successfully derives the semantics and phonology of each word when presented
with its orthography. Each of the five main sets of connections in the input network was subjected to lesions of
the standard range of severity. Fifty instances of each location and severity of lesion were carried out, and correct,
omission, and error responses were accumulated using a phonological output criterion of 0.6. Table 11 lists the rates
of correct performance for concrete and abstract words for each lesion location as a function of lesion severity. In the
following analyses, we include data only from lesions producing overall correct performance between 15-85% (listed
in bold in thetable).

Overall, concrete words are read correctly more often than abstract words (mean differencein correct performance:
6.4%; F'(1,1549) = 6.28, p < .001). However, it is clear from the table that the pattern of results depends critically
onlesion location. For lesionsto the direct pathway (0=-I and I=S), the advantage for concrete over abstract wordsis
far more dramatic (mean difference: 22.3%; F'(1,548) = 27.4, p < .001). While this difference is not quite as large
asisfound with most deep dyslexic patients, it is nonetheless quite substantial .

By contrast, lesions to the feedback connections (S=>I) produce no significant differences in relative correct
performance of concrete and abstract words (F'(1,249) < 1). Thisis also true of moderate lesions to the clean-up
pathway (S=-C and C=S; F'(1,549) < 1 for lesions of severity less than 0.5). However, severe clean-up lesions
result in the reverse advantage—abstract words are responded to more accurately than concretewords (F'(1, 49) > 22,
p < .001 for each of S=-¢(0.5,0.7) and ¢=-5(0.5,0.7)). Thistype of lesion and pattern of performance are consistent
with what is known about the concrete word dyslexic, CAV (Warrington, 1981). Hisreading disorder was quite severe
initially, and he also showed an advantage for abstract words in picture-word matching with auditory presentation,
suggesting modality-independent damage at the level of the semantic system.

As mentioned above, the error responses of deep dyslexia patients tend to be more concrete than the stimuli which
produce them. For the damaged network, we tested this by counting how often a stimulus and response were of the
opposite type. Overall, abstract words are over twice as likely to produce a concrete response than vice versa (33.4%

17This procedure is slightly different than the one used to train the phonological output networks for the original H& S stimuli, in which the direct
and clean-up pathways were trained separately and then combined (see the section on “ Generating Phonological Responses”).
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Table 11: Correct performance for concrete and abstract words for each lesion location as afunction of lesion severity.

Lesion Word Lesion Severity

Location Type 005 010 015 020 025 030 040 0.50 0.70
concrete 886 750 671 527 442 383 230 16.7 74

0=1 abstract 69.0 508 400 254 213 161 104 44 15
difference 196 242 271 273 229 222 126 12.3 5.9

concrete 751 548 382 282 199 141 6.3 4.2 0.9

I=S abstract 539 266 164 100 6.1 3.0 12 0.8 0.0
difference 21.2 282 218 182 138 111 5.1 34 0.9

concrete 979 942 923 893 859 811 76.7 74.4 67.7

S=1 abstract 962 930 909 878 837 836 798 72.8 67.0
difference 1.7 1.2 14 15 22 -25 -31 16 0.7

concrete 946 912 836 789 714 658 572 435 28.4

S=C abstract 935 870 841 788 712 69.2 618 56.4 427
difference 11 42 -05 01 02 -34 -46 -129 -14.3

concrete 887 794 672 594 450 423 308 18.8 12.2

C=3 abstract 831 740 650 546 486 423 333 27.2 21.6
difference 56 54 22 48 -36 00 -25 -84 —94

Note. Datafor lesions resulting in overall performance between 15-85% correct are listed in bold.

vs. 15.6% of total errors, F'(1,2598) = 53.9, p < .001). Post hoc analyses for each lesion location and severity
showed asimilar pattern asfor correct performance: atendency for responsesto be more concretefor al lesionswithin
the direct pathway, but the opposite tendency for severe lesions within the semantic clean-up pathway.

Error responses were categorized in terms of their visual and semantic similarity to the stimulus. Words were
considered visually similar if they overlapped in two or more letters—which corresponds to the standard neuropsycho-
logical criterion—and semantically similar if their semantic representations overlapped by at least 84% for concrete
words and 95% for abstract words. The definition of semantic similarity ismore complicated because of the systematic
differences between concrete and abstract semantics and because the semantic representations are not organized into
categories as in the H& S simulations. Note that two typical unrelated words have roughly 67% overlap if both are
concrete and 91% if both are abstract. Thus, the values of the semantic relatedness criteria for concrete and abstract
words are each approximately half way between the corresponding expected value for unrelated word pairs of the same
type and 100%.

Figure 20 shows the rates of each error type produced by each lesion location, for concrete and abstract words
separately. Also included in the figure is the distributions of each error type for “chance” error responses to chosen
randomly from the word set in response to concrete or abstract stimuli. Notice that the criteriafor visual and semantic
relatedness are quite stringent—almost 85% of all possible stimulus-response pairs are unrelated. One consequence
of thisisthat only four of the 190 pairs of abstract words are both visually and semantically related, and none of the
concrete pairs are. Thus, concrete words cannot produce mixed visual-and-semantic errors. Nonetheless, when errors
to concrete and abstract words are taken together, the ratios of the rates of each error type with that of other errors
is at least four times the chance value for every lesion location. In fact, this aso holds for each word set separately,
except for visual errors to abstract words produced by clean-up lesions, where the ratios are only about twice the
chance value, and for S=C lesions which produced no semantic errors to abstract words. Also, the rates of mixed
visual-and-semantic errors among the abstract words for al lesion locations are at least three times the rates expected
from the independent rates of visual and semantic errors. Thus, the network replicates, on a different word set, the
H& S finding of mixtures of error types for lesions throughout the network, including purely visual errors for lesions
entirely within the semantic clean-up system. In addition, as with the networks trained on the original H& S word set,
a number of the other errors are actually of the visual-then-semantic type found in deep dyslexia (e.g., PLAN =(flan)
="“tart").

A particularly intriguing aspect of the patient data is that abstract words are particularly likely to produce visua
errors. The same is true of the network. A comparison of error types for concrete and abstract words revealed that
the proportion of errors which are visual is higher for abstract words (41.4% vs. 36.4%, F'(1,1036) = 3.95, p < .05),
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while the proportion of errors which are semantic is higher for concrete words (32.3% vs. 6.4%, F'(1,1036) = 155.1,
p < .001). This effect is most clearly shown in Figure 20 for lesions of the direct pathway. As a measure of the
abstractness of the errors produced by alesion, we used the number of errors to abstract words minus the number of
errors to concrete words. Applying this measure to visual and semantic errors separately reveals that visual errors
are more abstract than semantic errors (means 0.201 vs. —0.161 per lesion, F'(1,2598) = 85.0, p < .001). Finally,
for each pair of visually similar words of contrasting types (e.g., TART and TACT), we compared how often each word
produced the other as an error. Overall, abstract words are more likely to produce the paired visually similar concrete
word as an error than vice versa (13.1% vs. 6.2% of total errors; Wilcoxon signed-ranks test n = 520, 7 = 3.24,
p < .001). Considering lesions to the direct and clean-up pathways separately, the effect is quite pronounced for the
direct pathway (15.6% absvs. 3.9% con, n = 220, Z = 6.16, p < .001) whilelesions of the clean-up pathway produce
the opposite effect (0.0% abs vs. 23.8% con, n = 300, Z = 1.83, p < .05).

Overdll, the network successfully reproduces the behavior of deep dyslexic patients after lesions to the direct
pathway, showing better correct performance for concrete over abstract words, a tendency for error responses to be
more concrete than stimuli, and a higher proportion of visual errors in response to abstract compared with concrete
words. By contrast, severe lesions to the clean-up pathway produce the reverse advantage for abstract words, similar
to apatient with concrete word dyslexia.

Network Analysis

The effects of abstractness on the performance of the network under damage can be understood in the following way.
As abstract words have fewer semantic features, they are less effective than concrete words at engaging the semantic
clean-up mechanism, and must rely more heavily on the direct pathway. Concrete words are read better under lesions
to this pathway because of the stronger semantic clean-up they receive. In addition, abstract words are more likely to
produce visual errors astheinfluence of visua similarity is strongest in the direct pathway. Slight or moderate damage
to the clean-up pathway impairs what little support abstract words receive from this system, but also impairs concrete
words, producing no relative difference. Under severe damage to this pathway, the processing of most concrete words
isimpaired but many abstract words can be read solely by the direct pathway, producing an advantage of abstract over
concrete words in correct performance.

In order to provide more direct evidence for this interpretation, we examined a number of aspects of the operation
of the undamaged network. One measure that should be particularly informative is the similarity of concrete and
abstract word representations at different times and locations in the network with their final semantic representations.
One hypothesis is that, if abstract words rely more heavily on the direct pathway and less on the clean-up pathway,
their representations should be more semantically organized than those of concrete words prior to the influence of
semantic clean-up. However, this was found not to be the case: concrete words are consistently more semantically
organized than abstract words.

Nonetheless, there is evidence that the clean-up pathway is particularly important in processing concrete words.
Figure 21 presents the final clean-up representations of each word, with concrete words on the left and abstract words
ontheright. Therepresentationsfor concretewordsare far more binary than thosefor abstract words. When processing
a concrete word, most clean-up units receive strong input (positive or negative) from semantics and are driven into a
state near O or 1. In contrast, clean-up units receive relatively weak input from semantics when processing an abstract
word, and so tend to remain in a state near 0.5. In this sense, the clean-up units play less of arole in generating the
correct semantics of abstract words than they do for concrete words.

Summary

The range of empirical phenomena addressed by H& S was quite limited, in part because of limitations of the original
model, but also in part because the restricted definition of the task of reading via meaning they used precluded
consideration of many aspects of deep dyslexic reading behavior. The simulations in this section serve to replicate
the original findings of the co-occurrence of error types using a different word set, but more importantly to extend the
empirical adegquacy of the approach to include the effects of abstractness in deep dyslexia and its interactions with
visua influencesin errors. Our explanation for these effects hinges on the claim that far fewer features are consistently
activated at the semantic level for abstract words than for concrete words. This difference causes the direct and
clean-up pathways of the network to become differentially important in processing each type of word through the
course of learning, and is thus reflected in the behavior of the network under damage. The explanation has some
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Figure 21: Thefina states of the clean-up units for (a) concrete words and (b) the abstract words.

similarities to those previously offered for the interaction between effects of abstractness and visual similarity (e.g.,
Morton & Patterson, 1980; Shallice & Warrington, 1980) but these were essentially ad hoc verbal extrapolations from
cascade notions unrelated to other aspects of the syndrome, without even a principled account of the abstract/concrete
difference. The present account is supported by asimulation, islinked to explanations of other aspects of the syndrome,
and offers the possibility of also addressing concrete word dyslexia.

General Discussion

The appeal of connectionist modeling is greatest when the formalism significantly contributesto a natural explanation
for empirical phenomena that are counterintuitive when viewed within other formalisms. The paper focuses on the
symptom-complex of deep dyslexia. While the syndrome can certainly be described in terms of impairments within
traditional “box-and-arrow” information-processing models of reading (e.g., Morton & Patterson, 1980; Shallice &
Warrington, 1980), such accounts offer little in the way of underlying principles that explain why such a diverse
set of symptoms should co-occur in virtualy all known patients who make semantic errors. Hinton and Shallice
(1991) offer a connectionist account in which the central aspects of deep dyslexia—the existence of semantic errors
and their co-occurrence with visual and mixed visual-and-semantic errors—arise naturally as a result of damage to
a network that builds attractors in mapping orthography to semantics. While the approach has the advantage over
traditional models of being far more computationally explicit, it has the limitation that there is little understanding of
the underlying principles of the model which give rise to its behavior under damage. The current research involves
a set of connectionist simulation experiments aimed both at developing our understanding of these principles, and at
extending the empirical adequacy of the approach on the basis of this understanding. The results demonstrate the
usefulness of a connectionist approach to understanding deep dyslexiain particular, and the viability of connectionist
neuropsychology in general.

In this final section, we begin by discussing computational issues, focusing on the nature of the principles that
underly the ability of networks to reproduce the characteristics of deep dyslexia, and their degree of generality. We
then turn to empirical considerations, evaluating the degree to which these computational principles account for the
full range of patient behavior. The relationship between the current approach and other theoretical accounts of deep
dyslexiais considered next. We conclude by considering more general issues regarding the impact of connectionist
modeling in neuropsychology.
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Computational Generality

Most connectionist efforts in modeling acquired dyslexia (e.g., Mozer & Behrmann, 1990; Patterson et al., 1990)
have followed the standard approach in cognitive neuropsychology of using a particular model of normal reading to
account for disorders of reading as a result of damage. In contrast, H& S never intended their model to be anything
but the coarsest approximation to the mechanism by which normal subjects derive the meanings of words. Rather,
their network was intended to embody particular computational principles, involving distributed representations and
attractors, that were claimed to underly the effects seen in patients. In this way, the H& S model was put forth as
representative of awide class of models, all of which share the same basic principlesbut differ in other respects, and all
of which, it wasimplicitly claimed, would show the characteristics of deep dyslexiaunder damage. However, H& Sdid
not demonstrate that model s which lacked the properties they claimed were central would not show the characteristics
of deep dyslexia, nor did they investigate the actual nature and scope of the class of models that would. The present
research is aimed, in part, at clarifying exactly what aspects of the original model are responsible for its similarity
under damage to deep dyslexic patients, and what aspects are less central. To this end, simulations were carried out
that explored the implications of each of the major design decisions that went into the H& S model: the definition
of the task including the representation of the orthographic input and semantic output, the specification of network
architecture, the use of a particular training procedure, and the means by which the performance of the network is
evaluated.

Critical System Properties
The present simulations investigate systems with the following sets of properties:

1. Orthographic and semantic representations are distributed over separate groups of units, suchthat similar patterns
represent similar words in each domain, but similarity is unrelated between domains;

2. Connection weightsare learned by a procedurefor performing gradient descent in some measure of performance
on the task of mapping orthography to semantics;

3. Mapping orthography to semantics is accomplished through the operation of attractors (and the lesion does not
seriously impair the connections which implement the attractors);

4. The semantic representations of concrete words are much “richer” than those of abstract words (i.e. contain
considerably more consistently accessed features).

The purpose of the simulations has been to assess the hypothesis that any system which has these four propertieswill
exhibit, when damaged, the following central characteristics of deep dysexia:

1. Semantic, visual, mixed visual-and-semantic, visual-then-semantic, and other (unrelated) errors occur;
2. Concrete words are read better than abstract words;

3. Visual errors (a) tend to have responses that are more concrete than the stimuli, (b) occur more frequently on
abstract than concrete words, and (c) have stimuli that are are more abstract than for semantic errors.

It should be borne in mind that these characteristics have not been equally thoroughly investigated. Evidence for the
generality of the types of system giving rise to the deep dyslexic symptom-complex has been obtained only for the
error pattern characteristic. Characteristics 2 and 3 have been examined only in one small group of systems, related to
the 10-15d and 40-40fb back-propagation networks. These latter characteristics are discussed in the next subsection.

As far as characteristic 1 is concerned, the main empirical results of the simulation experiments are clear: the
co-occurrence of semantic, visual, and mixed visual-and-semantic errors after unitary lesions is not due to any
idiosyncratic characteristics of the original H& S network. In addition to holding for different lesion locations, asH& S
found, it also holds for networks with different architectures, using different output systems, trained with different
learning procedures, and performing different versions of the task. Thus, in the section on “ The Relevance of Network
Architecture,” five alternative network architectures were examined in addition the one H&S used. With minor
exceptions of certain lesions to the clean-up pathways, giving rise to very low error rates, all networks except one
produce the error pattern of characteristic 1, wherever they are lesioned.

If one considers how the output produced by the system is assessed, the current simulations represent an advance,
from a computational point-of-view, over related work in certain respects. The most important of these is the
development of networks that generate explicit phonological responses without the use of a best-match procedure.
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What is, however, critical for the present purposes is that the various input network architectures have each been
implemented with two alternative output systems (although only one is described in this paper; see Plaut, Note 10, for
additional details). The networks exhibited qualitatively the same error pattern with both output systems, as well as
when response criteria are apply to semantics. The simulations with the DBM network and with the abstract/concrete
word set also employed phonological output systems, and each produced a similar pattern of errors.

All the simulations, with the exception of the replication of the H& S network, used a different form of input
representation from that used by H& S. The new representation, however, also obeys system property 1, and did not
affect the qualitative error pattern (characteristic 1). The more general issue of distributed representationsis discussed
further below. Asfar asthe effects of different training procedures are concerned, in the section on “ The Relevance
of Training Procedure,” an algorithm was employed which differs from the iterative back-propagation procedure used
by H& S, but which also obeys system property 2. A qualitatively identical error pattern was still obtained wherever
lesions were made. Finally, acompletely different version of the task was examined in the section on “Extending the
Task Domain,” again with no qualitative change in the error pattern.

The fact that the co-occurrence of error types held under virtually all conditions examined does not enable us to
isolate necessary as well as sufficient properties that must hold of systems for them to produce the deep dyslexic error
pattern when damaged. |n fact, among the simulationsthat were run, there were some conditions under which the error
pattern did not occur. These were of two types. First, very few explicit errors occur for lesions to the phonological
clean-up pathway in the back-propagation output networks (see Figure 10). When no output system was used, this
was also true of lesions within the semantic clean-up system in some networks (e.g., the 40-60 network). These are
cases in which the pathways responsible for implementing the attractors are themselves damaged. Second, and more
directly, explicit errors are almost nonexistent after I=-S lesionsin the 40-80 network when using the response criteria.
Here, the lesion isto a pathway further in the processing system than the region where the attractors are formed. These
results provide evidence that supports H& S's claim—for which they presented no evidence—that the existence of
attractorsis essential to produce the deep dyslexic error pattern.

The importance of attractors, property 3 above, can be seenin another way. The robustness of anetwork to damage
of its direct route tends to be positively correlated with the rate of explicit error responses. This can be seen from a
comparison of 0=I lesion resultsacross networksin Table 4, and also, although less clearly, inthe I=S lesion results.
The same pattern also holds across the different output networks that were developed. These effects suggest that the
processes responsible for maintaining correct performance after damage are also responsible for the production of
errors—namely, the strength of attractors that have been formed.

It would, however, be too strong a claim to make on the basis of the current simulations that properties 1—
4 are necessary for a system to exhibit characteristics 1-3 (property 4, the relative richness of concrete semantic
representations, is discussed below). However, the simulations provide strong evidence that systems obeying these
properties exhibit the deep dyslexic error pattern under damage, and that variation in other aspects of their design do
not fundamentally alter this pattern of breakdown. It seems plausible, therefore, that humans exhibit deep dyslexia
after some types of brain damage because their cognitive systems also obey properties 1-4.

Potential Limitationson Computational Generality

One effect observed by H& S that appears to be less general is that of higher rates of mixed visual-and-semantic
errors than predicted by the independent rates of visual errors and semantic errors. When the pressure to build
strong attractors was increased by training with noisy input, this effect was observed only in networks in which the
intermediate units between orthography and semantics were involved in developing attractors (i.e. the 40-80i, 80fb,
and 40-40fb networks). The mixed rate was not higher than predicted in networks in which the attractors operated
separately from, and subsequently to, the direct access of semantics from orthography (i.e. the 40-60 and 10-15d
networks). To the degree that patients exhibit a sufficiently high rate of mixed visual-and-semantic errors, the results
place constraints on the nature of network architectures that can account for these effects.’® The non-generality of this
effect also emphasizes the necessity of exploring a range of models that vary systematically from a particular model
that shows some effect. It isdifficult to determine which empirical results are robust and which are not on the basis of
intuitions alone.

180ne possible reason for questioning these results in patients is that a high rate of mixed visual-and-semantic errors might result from a post-
lexical editing processthat occasionally blocks semantic errors with no phonological or orthographic similarity to the input, as suggested by Levelt,
Schriefers, Vorberg, Meyer, Pechmann, and Havinga (1991) for normal subjects.
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A potential limitation of the original H& S work that has not been addressed in subsequent simulations is the
possible effects of using such a small training set. Although we demonstrated that the basic effects hold for two
separate word sets—the original set and the abstract/concrete set—both sets contain only 40 words. The question
arises as to whether the results are strongly biased by this limitation. In fact, Seidenberg and McClelland (1990) have
argued that many of the limitations of their model are due to the fact that it was only trained on about 2900 words.
However, there are significant differences between the tasks that the two models perform that provide reasonable
justification for the reliability of effects produced in the current networks with only 40 words. Mapping directly from
orthography to phonology involves learning statistical rel ationships among mappings that can then be applied to novel
inputs in reasonable ways. Thus, a large number of training cases are required to estimate these statistics reliably,
and performance would be expected to improve with alarger training set. In contrast, mapping from orthography to
semantics involves overcoming statistical regularities, since visual similarity is not predictive of semantic similarity.
It istruethat a small training set limits the range of similarity that can be expressed within orthography or semantics,
but it is unlikely to fundamentally alter the nature of the mapping between them. Thus, the small size of the word
sets prevented us from investigating the effects of variables such as frequency and syntactic class that are known to
significantly influence deep dyslexic reading, and these issues remain open for future research. However, the basic
findings of the co-occurrence of error typeswould still hold if a much larger set of words were used.

Empirical Adequacy
Quantitative Adequacy

The pattern of errors found when the model s described in this paper are lesioned fits qualitatively with that observed
in deep dyslexia. However, the quantitative fit seemsless adequate. |f one examineswhat proportion of all non-correct
trialsgiveriseto an explicit error response, then for seven deep dyslexic patients reviewed by Shallice and Warrington
(1980), the value is between 25% and 95% (median 59%). By contrast, for the 19 lesion types shown in Table 4, for
only one is the value over 50% (0=-I lesions in the 10-15d network), and for only one other is it over 20%. Table 4
reports results based on the use of response criteria applied to semantics in lesioned back-propagation networks. The
use of a phonological output network leads to higher values (see Figures 10 and 20), as does the use of the DBM
network (see Figure 15). However, in general, lesions to the networks result in values below, rather than above, 50%.

It would beincorrect, though, to take this quantitative discrepancy between patients and models as strong evidence
against the models. For the models, factorsthat are not central to the theory, such asthe way responses are determined,
greatly affect absolute error rates. Moreover, many parameters are set for computational convenience, such as the
number of intermediate units; or are clearly not redlistic, like the number of semantic and visual competitors of a
typical word. Variationsin such parameters are also likely to affect absolute error rates, although it is the theoretical
claim of this paper that such variations would not lead to qualitative changesin the error pattern.

One property of the deep dyslexic error pattern is that some patients make far more semantic errors than visual
errors, while other patients show the opposite tendency. Thus, Patterson’s (1978) patient, PW, produced about four
times as many semantic errors as visual, while KF (Shallice & Warrington, 1975) produced 15 times as many visual
errors. Could this quantitative difference be explained in terms of a contrast in the effects of lesioning at different
places in the same network? The more detailed quantitative aspects of the error pattern in the present simulations
confirm H&S's finding that large variations in the ratio of visual errors to semantic errors do occur with different
lesion locationsin the same network. Thisratio differs across lesion sites by a factor between 3 and 10 for each of the
back-propagation networks (comparing the 0=-1I ratio with the I=-S ratio, see Table 5). When an output system is
added, similar but slightly smaller values are obtained if input |esions are contrasted with output lesions (see Figure 10
for the extended 40-60 network, and Figure 15 for the DBM). Thus, while the networks do not produce quite such
extreme contrasts as selected patients do, the effects obtained with the networks are generally in line with those shown
by patients.

Inspection of Table 5 suggests that errors with a visual component (i.e. visual and mixed visual-and-semantic
errors) will always exceed semantic errors, which is not the case in some patients (e.g., PW, Patterson, 1978; GR,
Marshall & Newcombe, 1966). However, this effect arises from the particular criteria used to classify all possible
errors as visually related (30% by chance) and as semantically related (12% by chance). If the criteria are adjusted so
that the chance rates of the two error types are equalized to approximately 10%—somewhat more in line with criteria
used empirically—then, semantic errors can outnumber visually similar errors. For example, in the 40-60 network,
semantic errors are 20% more frequent than visual and mixed visual-and-semantic errors combined after I=S lesions,
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but 30% less frequent after 0=1 lesions.'® Overall, the quantitative variation in rates of different error types that occur
across patients seem broadly compatible with the behavior of the models.

Extensionsto Further Aspectsof the Syndrome

The simulations reported in this paper have two main goals. Thefirst isto show the computational robustness of
the occurrence of the basic deep dyslexia error pattern when models satisfying the four assumptions listed above are
lesioned. The second goal is to show that other aspects of the deep dyslexia symptom-complex arise when individual
models of this sort are explored in more detail. This part of the work is more exploratory and less rigorous, as we
have investigated the individual models which are technically easiest to examine with respect to a particular issue,
rather than the full gamut of models used in the work on the basic error pattern. In all cases, though, it is not the case
that investigations of other models which are not reported here produced a different pattern of results. This section,
therefore, may be viewed as an exploration of what characteristics other than the basic error pattern would be observed
when a network satisfying the four assumptionsis lesioned.

Three issues were specifically addressed: the effects of abstractness/concreteness, how confidence relatesto error
type, and lexical decision. Information relevant to a fourth issue, visual-then-semantic errors, came to light in the
course of the study. A fifth issue, the different subvarieties of deep dyslexia, was indirectly confronted when the
problem of generating phonological output was tackled.

Effectsof abstractness. Inthesimulation described inthe section on “ Extending the Task Domain,” an additional
assumption was made, following Jones (1985) and Gentner (1981), that concrete nouns have a “richer” semantic
representation consistently accessed than do other words. Specifically, the number of dimensions on which the
semantic representation of aword has a specific value independent of the valuesit has on other dimensions, and across
different contexts, is assumed to be greater for concrete nouns than for other words. This corresponds in our model to
concrete nouns having more semantic features than do abstract nouns. When this assumption is made, lesions to the
direct pathway of the input network lead to an advantage in correct performance for concrete over abstract words. In
further experiments not reported in this paper, lesions to the output network also resulted in better correct performance
on concrete vs. abstract words, although the difference was not as large as for input lesions. It appears that the
greater number of active semantic features gives the clean-up circuit more raw material on which to work, allowing
stronger attractors to be built. This fits with Funnell and Allport’s (1987) suggestion that “certain classes of words
evoke cognitive representations that are themselves relatively autonomous (strongly auto-associated) and therefore
form relatively stable cognitive structures’ (p. 396). The magnitude of the effect in the network is not quite aslarge as
that shown in some deep dyslexic patients, but a quantitative difference of this sort is not unexpected given the great
differencein scale between the model and the human cognitive system. More surprising than the mere existence of an
abstract/concrete effect isthe fact that it interacts with the occurrence of visual errorsin asimilar way to that found in
most deep dyslexic patients in whom it has been investigated. After lesions to the direct route in the network, visual
errors on average occur on more abstract words than do semantic errors, and the responses of visual errors tend to be
more concrete than the stimuli.°

Better performance in reading concrete than abstract words is not always found in acquired dyslexic patients.
Warrington (1981) reported a patient, CAV, who read abstract words significantly better than concrete words, although
the difference (55% vs. 36%) was not as dramatic as the complementary contrast found in certain deep dyslexic
patients. The apparent double dissociation of concrete vs. abstract word reading between CAV and deep dyslexic
patients is difficult to account for without resorting to the rather extreme position that the semantics for concrete and
abstract words are neuroanatomically separate (Shallice & Warrington, 1980; Warrington, 1981). The simulation
provides an alternative explanation. Severelesionsto the clean-up pathway lead to an abstract word superiority which
is, though, smaller than the concrete word advantage obtained from lesions to the direct pathway.

The difference between the two types of explanation is subtle but important. Since in our simulations we allow
damage to impair the direct and clean-up pathways independently, we are implicitly assuming that these pathways are

1with the adjusted criteria, semantic errors can also outnumber visually similar errors in the 10-15d, 40-40fb, and H& S replication networks,
but the rates of mixed visual-and-semantic errors remain high in the 40-80i and 80fb networks. This providesfurther evidence that the relative rates
of mixed visual-and-semantic errors are sensitive to architectural details.

20The one patient who differed in this respect was GR (Barry & Richardson, 1988). Like the simulation, GR produced visual errors much more
frequently on abstract words, but for GR the stimuli producing visual errors and semantic errors were roughly equally concrete. However, GR made
semantic errors in matching spoken as well as written words to pictures (Newcombe & Marshall, 1980a). Hisimpairment would therefore seem to
involve the semantic system itself, which, when lesioned, would be expected to give rise to a higher number of semantic errors, even for concrete
words, as was true of the extended 40-60 network (see Figure 10).
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neuroanatomically separate. However, it is not the case that the direct pathway processes abstract semantics while
the clean-up pathway processes concrete semantics. The entire network is involved in generating the semantics of
both concrete and abstract words. Rather, the direct and clean-up pathways serve different computationa roles in
this process, and these roles are differentially important for reading these two classes of words. As in the account
given by Shallice and Warrington, the dissociations arises from the selective impairment of a specialized process, but
the speciaization is not in terms of the surface distinction (i.e. concrete vs. abstract words) but rather in terms of
underlying representational and computational principles (e.g., the influence of differing number of semantic features
on the development of attractors).

The fact that the model is consistent both with patients showing a concrete word advantage and with patients
showing an abstract word advantage may suggest to some readers that the model is underconstrained by the data.
There are three possible replies. First, overall, both patients and the model show a concrete word superiority. Second,
for both types of superiority, the model predictsthat visual error responseswill tend to come from the class of wordsthat
are read more accurately. As predicted, CAV’'svisua error responses were more abstract than the stimuli (Warrington,
1981). Finally, themodel predictsthat the complementary patternswould differ on other characteristics, corresponding
to the different effects of direct vs. clean-up pathway lesions. CAV also showed an advantage in matching auditorily-
presented words with pictures, suggesting modality-independent damage at the level of the semantic system. Thus,
there are additional aspects of our simulation that counter the challenge that it is underconstrained. However, given
the uniqueness of concrete word dyslexiain CAV, its occurrence in the model should be considered suggestive rather
than conclusive.?!

Confidence judgments. We examined the relative confidence with which visual errors and semantic errors are
produced in the DBM network. Two analogues for confidence were developed: the speed of settling, measured in
terms of the number of iterations, and the “goodness’ of the resulting representation, measured in terms of theenergy in
different parts of the network. Using both measures, visual errors were produced with more confidence than semantic
errors, as has been observed in three deep dyslexic patients by Patterson (1978) and Kapur & Perl (1978), although the
differences observed in the network were small.?

Lexical decision. Coltheart (19804), in his review, rates lexical decision as being “surprisingly good” in nine
patients, but most of the evidence is based on personal communication. The published results that are cited pertain
only to two of the patients (DE, PW, Patterson, 1979). Lexica decision was not rated “surprisingly good” in three
patients; JR (Saffran, personal communication), PS (Shallice & Coughlan, 1980), and AR (Warrington & Shallice,
1979).22 Moreover, our attempts to demonstrate preserved lexical decision performance in a lesioned network have
also been somewhat indeterminate. 1n an early investigation, Hinton and Shallice (Note 5) defined a yes response in
lexical decision in the network by using alower value of the proximity criterion than required for explicit naming (0.7,
down from 0.8) and no gap criterion. This procedure did not result in relatively preserved lexical decision for words
that could not be read. However, this effect was obtained in the present investigation when a procedure similar to that
employed by Seidenberg and McClelland (1989) was used with the DBM network. According to this procedure, letter
strings are given a yes response in lexical decision when they can be “re-created” on the basis of orthographic and
semantic knowledge. For words that could not be read, this yielded a d’ value (2.08) of the same sort of range as that
found in DE (1.74; Patterson, 1979). While these more recent results are promising, it should be kept in mind that
aspects of the simulations—in particular, the definition of the task of lexical decision—are too unconstrained for the
simulationsto constitute acompl etely adequate characterization of preserved lexical decision in deep dyslexic patients.

Visual-then-semantic errors. A phenomenon that was not specifically investigated is the occurrence of visual-
then-semantic errorsin deep dyslexia (e.g., SYMPATHY ="orchestra’, presumably mediated by symphony; Marshall &
Newcombe, 1966) These are generally thought of as a visua error followed by a semantic error (Coltheart, 19804),
which presumably implies that two different impairments are involved. The present simulations provide a more
parsimonious explanation, as the errors can arise when only a single set of connections is lesioned. They were
observed unexpectedly using both the original H& S word set and the abstract/concrete word set. The mechanism by
which they arise is most clearly seen in the case where the network includes an output system. A lesion to the input

21CAV does differ from the predictions of the models in making virtually no semantic errors. However, his nonword reading was not totally
eliminated, as on one occasion he read 20% of nonsense syllables (Warrington, 1981). Thus, it remains possible that semantic errors could be
edited out by his partially preserved phonological route, in an analogous fashion to the suggestions made by Newcombe and Marshall (1980b) for
phonological alexia. However, until apatient is reported who is otherwise similar to CAV but who makes semantic errors, this suggestion remains
ad hoc.

22N somewhat different pattern of findings on GR (Newcombe & Marshall, 1980a) is not based on an adequate amount of data.

ZAR differs from prototypical deep dyslexia patientsin a number of ways (see Coltheart, 1980a). Also, his lexical decision was assessed in an
unusual fashion.
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system can produce a semantic representation very close to that of aword visually related to the stimulus. However,
the attractorsin the output system may map this slightly inaccurate semantic activity onto the phonology of asemantic
neighbor of this visually related word rather than the phonology of the word itself. It is the normal operation of the
output system that produces the semantic part of the visual-then-semantic error.

Subvarieties of deep dydexia. Thefinal empirical issue addressed by the present investigation of deep dyslexia
is that it can arise in a number of forms. Some patients, such as PS (Shallice & Coughlan, 1980) and KF (Shallice
& Warrington, 1980), are much better at comprehending spoken than written words, suggesting an earlier locus of
impairment, between orthography and semantics. Other patients, such as GR (Newcombe & Marshall, 1980a, 1980b)
and FD (Friedman & Perlman, 1982), show similar typesof errors acrossanumber of lexical tasks, involving variations
in the modality of both the stimulus and the response, suggesting an impairment within lexical semantics itself. Still
other patients, such as PW (Patterson, 1978, 1978), show relatively intact comprehension of visually presented words,
even those they cannot read aloud, suggesting an impairment between semantics and phonology (or within phonology
itself). The same divisions can be made on the basis of the relative proportions of visual and semantic errors. As
mentioned above, some patients make far more visual than semantic errors; the ratio of visual errorsto semantic errors
was around 2.5 for VS (Saffran & Marin, 1977), 5 for PS, and approached 14 for KF. The two types of errors are
approximately equal for other patients (e.g., PD, Kapur & Perl, 1978). Still others make far more semantic errors than
visual errors—about 2.5 times more for GR (Marshall & Newcombe, 1966; Barry & Richardson, 1988) and 4 times
more for PW. Finally, lexical decision performance, to the limited extent it has been investigated in deep dyslexic
patients, variesin the same way as comprehension and error proportion data (Barry & Richardson, 1988; Shallice &
Warrington, 1980). Taken together, these distinctions have led researchers to suggest that deep dyslexic patients can
be further classified as input, central, or output, based on whether their impairment is located prior to, within, or after
semantics (Friedman & Perlman, 1982; Shallice, 1988a; Shallice & Warrington, 1980).

Our simulations show similar variation in comprehension, relative error rates, and lexical decision, as a function
of lesion location. Let us consider a misread word to be comprehended correctly when its semantics match those
generated by the network better than any other word. Among words that are misread by the extended 40-60 network
(both errors and omissions), only 46.1% are comprehended after input lesions (0=I and I=S) and 81.2% are
comprehended after central lesions (S=C, C=-S, and the S units themselves). By contrast, since output lesions to
the back-propagation networks leave the semantics they derive unaffected, they would show 100% comprehension of
words they could not read. The DBM network shows a similar distinction in comprehension performance, although
there is some impairment after output lesions because processing is far more interactive than in the back-propagation
networks. Specifically, only 14.6% of incorrectly read words are comprehended after input lesions, and 25.7% after
central lesions, but 62.1% are comprehended after output lesions. In addition, as described above, these networks show
changesin theratio of visual errorsto semantic errors as afunction of lesion location analogous to those shown across
patients (see Table 5 for the back-propagation networks, and Figure 15 for the DBM network). Finally, lexical decision
in the DBM is better after output lesions (d’ = 2.31) than after input lesions (d' = 1.80). Thus, the simulations can
account for the variation across the different subtypes of deep dyslexia.

More fundamentally, what has been left totally unexplained by the division of deep dyslexic patientsinto subtypes
istheir similarity: why such widely varying impairments should give riseto qualitatively equivalent error patterns and
word-class effects in oral reading. The current simulations provide a simple explanation. Networks that map among
distributed representations of orthographic, semantic, and phonological information using attractors are naturally
sensitive to the similarities within these domains, and hence these similarities influence the errors that occur under
damage. Indeed, qualitatively equivalent error patterns arise in the simulations from lesions to any stage along the
semantic route, from thefirst set of connections after the orthographic input unitsto the last set before the phonol ogical
output units (see Figures 10 and 15).

Remaining Empirical |ssues

No evidence was obtained relating to certain aspects of the deep dyslexia symptom-complex. Some of these—
derivational errors, and part-of-speech effects—can be accounted for by natural extrapolations from the current results.
The situation isless clear for others: associative semantic errors, patients who make no visual errors, and the relation
with impairments in writing (deep agraphia). We consider each of thesein turn.

Derivational errors. Deep dyslexic patients often make derivational errors, giving aresponse that is a different
inflectional or derivational form of the stimulus (e.g., HITTING ="hit"). Since the word sets and orthographic repre-
sentations we have used do not involve inflections, we could not have directly reproduced this type of error in our
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simulations. However, derivational errors can be considered to be one variety of mixed visual-and-semantic error,
as they almost always have both a visual and a semantic relation to the stimulus. Therefore, above-chance rates of
such errors are to be expected given the rates of mixed errors produced in the simulations. This is not to deny that
the representations of inflectional or derivational forms of aword are related in a special way, unlike other visually or
semantically related sets of words (Patterson, 1978, 1980)—only to point out that the occurrence of derivational errors
in deep dyslexia can be explained without such an assumption (also see Funnell, 1987).

Part-of-speech effects. In general, deep dyslexic patients read nouns better than adjectives, adjectives better
than verbs, and verbs better than function words. Both the H& S word set and the abstract/concrete word set contain
only nouns. However, Jones (1985) showed that ordering words in term of ease-of-predication results in the same
overall rank ordering of syntactic classes. In addition, Barry and Richardson (1988) found that part-of-speech had no
effect on the reading performance of GR when concreteness, frequency, and “associative difficulty” (closely related
to ease-of-predication) were statistically controlled. In the abstract/concrete simulations, we reflected the ease-of-
predication of aword in terms of the number of active featuresin its semantic representation, and found that concrete
words, with greater ease-of -predication, are read better than abstract words. 1t would seem appropriateto give different
parts-of-speech semantic representations in which the average number of features varied in a similar fashion. By
analogy with the effects found with the abstract/concrete word set, one would expect that damage to the main part of
the network would result in the same rank order of correct performance, with nouns > adjectives > verbs > function
words. Thus, the approach taken in the simulations seems likely to produce the part-of-speech effects found in deep
dydexia (also see Marin, Saffran, & Schwartz, 1976).

Associative semanticerrors.  Coltheart (1980d) argued that two types of semantic errors occur in deep dyslexia:
a shared-feature type, and an associative type. In the present ssimulations, only the shared-feature type was formally
investigated. Comparing Tables 6.1 and 6.2 of Coltheart (1980d, pp. 147-148; also see the error corporain Coltheart
et al., 1980, Appendix 2), this type appears to be the larger group, and over half of those held to be associative by
Coltheart appear to have visual (V) or shared-feature (SF) characteristics as well.?* In some errors, however, the
associ ative aspect completely dominates (e.g., FREE =" enterprise”, STAGE =" coach”). Could a network produce such
errors?

Notice that words with an associative relationship often follow one another in spoken and written language. In
the course of normal fluent reading, the system must quickly move from the representation of one word to the next.
Suppose that the system must start from the attractor of the current word, or at least isbiased towardsit, when beginning
to process the next word. For word pairs that frequently follow each other (e.g., wRIST WATCH), the network will learn
to lower the energy boundary between the attractor basins for the two words so that the transition can be accomplished
more easily.?® Thislower boundary would be more easily corrupted or lost under damage than the boundaries between
basins for other word pairs. As a result, presentation of the first word would become more likely to settle into the
attractor for the second word, resulting in an associative semantic error. This explanation also predictsthat the reverse
ordering should also become more likely as an error, which is found in patients (e.g., DIAL ="sun” and CONE =
“ice-cream”; Coltheart, 1980d).2° Of course, these errors would become even more likely if the two words shared any
visua or semantic features.

Patientswho makenovisual errors. A major contribution of the current connectionist approach to deep dyslexia
is the ubiquitous co-occurrence of visual, semantic, mixed visual-and-semantic errors when an attractor network that
maps orthography to semantics is lesioned. Thus, possibly the strongest empirical challenge to the current account
is the existence of three patients who make semantic and derivational errors in reading, but no purely visual errors
(KE, Hillis et a., 1990; RGB and HW, Caramazza & Hillis, 1990). KE made semantic errors in al other lexical
processing tasks as well (e.g., writing to dictation, spoken and written picture-word matching), suggesting damage
within the semantic system. In contrast, RGB and HW made semantic errors only in tasksrequiring a spoken response,
suggesting damage in the output system after semantics. While a number of the network architectures we examined
produced no visua errors with some types of clean-up damage when the response criteria were used (e.g., 40-60 C=S
lesions; 80fb s=1I lesions), when an output system was used, all of the networks produced visual/phonologi cal errors
for every lesion location other than the phonological clean-up pathway. The primary motivation for developing an

2AANTIQUE =“vase” (SF), NEXT ="exit” (V), PALE=-"ale" (V), COMFORT ="blanket” (SF), IDEAL =“milk” (SF), THERMOS="flask” (SF), IN-
COME ="tax” (SF), MOTOR =-"car” (SF), BRING =-"“towards’ (SF), POSTAGE =-"stamps’ (SF), WEAR =" clothes’ (SF), sTY =“pig” (SF), BLOWING
="“wind” (SF), SHINING =-"sun” (SF), CONE ="ice-cream” (SF).

25This explanation does not imply that sequences of interpretations are caused by temporarily adjusting the energy boundaries between them, but
only that an effect of learning sequences would be to lower the boundaries between frequent transitions.

26Both directions of an associative error need not be equally likely after damage, because there can be differences in the paths that the network
follows in state space, settling from theinitial pattern for one word to the final pattern for the other.
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output system was to obtain an unbiased procedure for generating explicit responses from semantic activity, rather than
to model the human speech production system per se. In fact, there are many waysinwhich it is clearly inadequate for
the latter purpose (cf. Dell, 1986, 1986; Levelt, 1989). However, we have considered the pattern of errors produced
by lesioning the output network as helping to explain the existence of an output form of deep dyslexia. Therefore, we
can hardly argue that the deficits of RGB and HW, much less KE, are outside the scope of the model.

As far as patient KE is concerned, the initial report on word reading refers to most errors being semantic, but
remaining errors include phonologically and/or visually related ones. Such errors only amounted to 1.4% of all
non-correct responses in the main experiments reported. However, these experiments involved the presentation of a
considerable number of items (e.g., 14) from each of a number of categories (4 or 10), with each item presented in a
number of different tasks (e.g., 5). Thus, itemsin a small set of categories were repeatedly presented. It seemslikely
that KE would learn the categories and use thisto limit the number of visual responses, asthese would tend not to fall
in one of the categories. In addition, a considerable number of mixed errors seem to occur, but thisis not analyzed in
the paper. In the baseline testing situation where aword set which contained a variety of types of word was used (the
Johns Hopkins battery), KE is reported as making some errors “phonologically and/or visually related” to the target.
However, there is no direct evidence that KE did learn to edit out putative visua errors.

There appear to be two very different ways in which the absence of visual/phonological errorsin RGB and HW
can be explained. The first concerns the strategy used by the patient. Deep dyslexic patients at times produce a
circumlocutory response—they describe the meaning of the word rather than attempting to read it aloud. However,
in general, such responses form only asmall part of the deep dyslexic’s output (e.g., GR, DE). In contrast, both RGB
and HW produce many responses which are described as “definitions’ of the words they are trying to read (21% and
28% of al non-correct responses, respectively). Caramazza and Hillis (1990) report that, in repetition tasks, RGB
produced many circumlocutions, while HW often followed her errorswith the comment, | can’t say what you said but
that isthe idea.” Moreover, HW’s semantic errorsin reading or naming were often followed by a definition, asin her
response to a picture of grapes: “wine . . . but that’s not what it is, it'swhat you do with it . ...” Asthe patients were
clearly frequently trying to communicate that they understood the word, it seems quite plausible that any potential
visual/phonologi cal error (that would not be sense-preserving) would be edited out prior to articulation. After all, it
is convincingly demonstrated that semantic access from the written word was unimpaired in both patients. Semantic
errors, on the other hand, would be more difficult to detect as errors at the semantic level and could, in fact, serve as
an approximation to the meaning for communication purposes.

Alternatively, the lack of visual/phonological errorsin afew patients may be explained by individual differences
in the effects of qualitatively equivalent lesions in connectionist networks. The reported simulation results are the sum
of a number (typically 20) of random samples of a given lesion type. In a network, qualitatively and quantitatively
equivalent lesions, such as instances of 0=1(0.3), have quantitatively different effects depending on the particular
connections removed (also see Patterson et al., 1990). The reported results are means of distributions—the patients
who make no visual/phonologi cal errors may correspond to thetail of one of the distributions. In fact, the chance rate
of visual errors compared to semantic errors is much higher in the main simulations than it is in analyses of patient
data. These simulations are therefore more sensitive to the presence of alow rate of visual errorsthan are the reported
empirical observations (see the section on “ Quantitative Adequacy” above).

Neither of these solutionsto the problem posed to our modeling work by the three patients of Caramazza, Hillis, and
colleaguesis completely satisfactory. In our account of deep dyslexia, we have accepted that the response produced by
the patient can be modeled directly by the output of our network(s), and that the means of the effects of 20 qualitatively
and quantitatively equivalent lesions can model the responses produced by a patient with only one lesion. Our two
possible responses to the patients who make no visual errors imply that at least one of these assumptions can at best
hold only for the large majority of patients. The theory cannot apply in its strongest form to the results produced by
all patients who read by the semantic route as a result of neurological damage.

Acquired dysgraphia. The fina characteristic of deep dyslexia that Coltheart, Patterson, and Marshall (1987)
describeisthat “if apatient makes semantic errorsin reading isolated words aloud he or shewill also . . . haveimpaired
writing and spelling” (p. 415) which, they argue, will involve either a global or a deep dysgraphia. However, the
converse relation does not hold; there are deep dysgraphic patients who are not deep dyslexic (e.g., Bub & Kertesz,
1982; Newcombe & Marshall, 1984; Howard & Franklin, 1988). The simple presumption that the processing systems
and connections involved in writing are the same as those involved in reading cannot be easily held; moreover it is not
computationally plausible.

According to the present account, deep dysl exiadepends on the co-occurrence of at | east two major types of damage:
thefirst to the phonological route, and the second (less severe) to the semantic route. One possible explanation of deep

64



or global dysgraphia without deep dyslexia is that, in most people, writing is a less well-learned skill than reading,
and so would be more vulnerable to the effects of brain damage. Given this, and the fact that both reading and writing
make use of common semantic and phonological systems, damage that is sufficient to produce deep dyslexia would
seem likely to impair writing and spelling as well. On this account, though, deep dyslexia without deep or global
dysgraphia should eventually be observed. Indeed, relatively recovered pure aexic patients (Codett & Saffran, 1989)
would seem to fit this pattern (also see the patients of Beringer & Stein, 1930, and Faust, 1955, discussed by Marshall
& Newcombe, 1980).

Visual vs. phonological errors. It has frequently been suggested that some deep dyslexic patients have an
impairment in accessing phonological lexical representations from semantics (e.g., Friedman & Perlman, 1982;
Patterson, 1978; Shallice & Warrington, 1980). There are three main lines of evidence that lead to this conclusion.
First, certain patients (e.g., PW and DE; Patterson, 1978) frequently select the presented word when offered a choice
between it and their semantic error, implying that they know the presented word. Second, in auditory-visual matching
these patients again usually select the presented word rather than their visual error. Third, certain patients perform
as well on visual word-picture matching as for auditory word-picture matching, and perform both at close to normal
levels (e.g., VS, Saffran & Marin, 1977; PW, Patterson, 1979), although others are much worse with visual than with
auditory presentation of words (e.g., PS, Shallice & Coughlan, 1980; KF, Shallice & Warrington, 1980).

Our simulations present a potential problem for this argument. The output network develops strong phonological
attractors in the same way that the input network develops strong semantic attractors. Thus, for the same reason that
damage to the input network produces visual and semantic errors, damage to the output network would be expected to
produce semantic and phonological errors. This prediction standsin contrast with the inclusion of visual errors per se
as a symptom of deep dyslexia.

The word sets used in the current simulations were not designed to differentiate phonological from visual errors.
Yet pure phonological errors (e.g., HAWK =-"tor”) certainly occur when the output pathways are lesioned. Whether
phonological errors occur in deep dyslexia has never to our knowledge been empirically investigated, although
Goldblum (1985) suggests that the so-called visual errors are actually phonological. However, inspection of the error
corporafor anumber of patients (Coltheart et al., 1980, Appendix 2) do not support thisinterpretation. 1f one takes PW,
for example, many errors are more easily explained as avisua error (€.g., ORATE ="“over”, CAMPAIGN =" camping”)
but only one is easier to explain as a phonological error (GRIEF ="greed”). Attempts to simulate the three empirical
phenomenathat suggest an output lesion might reveal that they are compatible with an input lesion, or more particularly
alesion to the semantic system itself. In any case, the arearequires further empirical study and simulations.

Theoretical | ssues

The connectionist account of deep dyslexiathat we have devel oped from the position advocated by Hinton and Shallice
(1991) is based upon four assumptions, listed in the section on “Critical System Properties’ above, concerning the
process of mapping orthography to semantics. The first two of these are standard assumptions within connectionist
modeling. Another, on the difference between representations of abstract and concrete words, is derived from earlier
theorizing. Only the third, concerning attractors, is at all original to the present approach. In addition to these four
assumptions, two more are necessary to account for additional characteristics of deep dyslexia. The first, that the
mapping from orthography to semantics is isolated from phonological influences, is standard in accounts of deep
dyslexia (see Coltheart et a., 1980). The second, that the pathway from orthography to semanticsis also affected by a
lesion, iswidely but not universally held (see Shallice, 19883, for discussion).

If one takes the nine characteristics held to apply to deep dyslexia by Coltheart, Patterson, and Marshall (1987),
three are directly explained in a principled fashion on the present account (semantic errors, visual errors, concrete
word superiority). Three more (derivational/morphological errors, the part-of-speech effects, and function word
substitutions) follow in a straightforward fashion from the simulations, even though they have yet to be implemented.
An additional two are an immediate consequence of one standard assumption, that of the absence of phonological
processing. Only one, the relation between reading and writing, is at all problematic. In addition, the simulations offer
principled accounts of five other phenomena which have been widely investigated empiricaly: relatively high rates
of mixed visual-and-semantic errors, the interaction of semantic factors in the genesis of visua errors, confidence in
error types, lexical decision, and most surprisingly of all, the visual -then-semantic errors. However, as discussed in the
preceding section, there are anumber of other less central aspects of the disorder which are not yet well accommodated
within the approach.

Our account differs from others provided for deep dyslexia—and with few exceptions (e.g., Miceli & Caramazza,
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1990; Mozer & Behrmann, 1990), for cognitive neuropsychology as a whole—in providing what we have called a
“principled account.” By this, we mean that (a) many aspects of the syndrome are explained from a common set of
basi c assumptions, rather than requiring specific extraassumptionsfor each aspect; and (b) the explanations are derived
from the assumptions computationally rather than intuitively. Consider, as an example, the shared-feature semantic
error itself. Various theoretical accounts have been given as to why such errors should occur. Coltheart (1980d), in
his review of the phenomenon, considers two theories, but rejects one, the imagery explanation, as being empirically
much inferior to the other. The second one, the Marshall and Newcombe (1966) account, takes aposition derived from
Katz and Fodor (1963) in arguing that the patient lacks the ability to descend a hierarchically organized semantic tree
to the appropriate terminal leaf when deriving a phonological form from a semantic representation. Yet, as Coltheart
points out, this account would not explain the standard non-synonymous co-ordinate errors (e.g., NIECE ="“aunt”). He
suggests “ one needs to suppose that when a determiner islost, sometimes it leaves some trace: the patient knows that
a determiner is lost, so supplies one, without having any way of selecting the correct determiner” (p. 153). While
Coltheart provides some limited empirical arguments in favor of this amended Marshall and Newcombe position, his
amendment is not derived from any deeper assumptions and is not used in the explanation of any other phenomenon.
It remains, therefore, theoretically ad hoc. The account given by Shallice and Warrington (1980) suffers from similar
problems to that of Marshall and Newcombe (1966), and that of Morton and Patterson (1980) introduces specific ad
hoc assumptions. By contrast, on the present account the existence of semantic errors essentially derives from the
assumption of attractors, which is aso used in explaining many other aspects of the syndrome.

The Right Hemisphere Theory

Two other main classes of theory have been put forward to account for deep dyslexia: the multiple functional
impairments position (e.g., Morton & Patterson, 1980; Shallice & Warrington, 1980) and the right hemisphere theory
(Coltheart, 1980b, 1983; Saffran et al., 1980; Zaidel & Peters, 1981). The current account adopts the “subtraction”
assumptions taken by the multiple functional impairment theories, whereby impaired behavior is explained by the
damaged operation of the same mechanism that subserves normal behavior. In a sense, our account is a specific
version of thisclass of theory. However, as discussed in the Introduction, multiple functional impairment theories have
problemsin limiting the number of postulated impairments, and the locus of damage that explains one symptom often
differs from that assumed for another. The present version has two advantages in addition to the principled nature of
its predictions: it can explain a wide range of symptoms assuming that the isolated semantic route is subject to only
one locus of lesion, and can aso explain why a number of different loci of lesions give rise to qualitatively similar
patterns of symptoms.

The right hemisphere theory differs from the multiple functional impairment theories in that many aspects of
the syndrome are derived from a common cause. Here, though, the extrapolation from the basic assumption is an
empirical one: the reading behavior of deep dyslexic patients shares aspects with that of other patients known to be
reading with the right hemisphere (and normal subjects under brief left-lateralized presentation). The adequacy of
these correspondences is a matter of ongoing debate (see Barry & Richardson, 1988; Baynes, 1990; Coltheart et dl.,
1987; Glosser & Friedman, 1990; Jones & Martin, 1985; Marshall & Patterson, 1983, 1985; Patterson & Besner,
19844, 1984b; Patterson et al., 1989; Rabinowicz & Moscovitch, 1984; Shallice, 1988a; Zaidel & Schweiger, 1984).
Moreover, a recent PET study (Patterson, Howard, & Wise, personal communication) suggests that deep dyslexic
patients may differ in this respect. In two patients, the left hemisphere seemed to have little remaining tissue outside
the visual cortex. The third patient’s scan, however, showed a much smaller lesion confined to part of the posterior
left hemisphere. Thelesion in afourth patient, with deep dysphasia and surface dyslexia, was very similarly located.

For the present approach, the critical point is that a connectionist account can be orthogonal to one based on right
hemisphere reading. If the right hemisphere reads by the same principles as the normal mechanism for reading via
meaning (although perhaps less effectively), then the connectionist account could still apply. In addition, one would
not have to independently postulate that the right hemisphere reading process has a particular set of properties—they
could be inferred from the connectionist account. Moreover, the connectionist account could also explain reading
patterns similar to deep dyslexia which are based on left hemisphere reading (and so can be abolished by a second, left
hemisphere stroke; Roeltgen, 1987). In such an account, the total reading system would contain both left hemisphere
and right hemisphere units and connections (as well as inter-hemispheric corrections) with the left hemisphere ones
being more numerous. However, the compatibility of the connectionist and right hemisphere accounts of deep dyslexia
depends on the assumption that right hemisphere reading differs from normal reading only quantitatively and not
qualitatively. In their review, which is broadly favorable to the right hemisphere theory, Coltheart, Patterson, and
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Marshall (1987) leave this issue open.

Attractorsvs. Logogens

At a more detailed level, the operation of attractors plays a central role in our account of deep dyslexia. How
do attractors relate to other theoretical concepts that have been used in explaining deep dyslexic reading behavior?
The most commonly used concept with some relation to an attractor is that of alogogen (Morton, 1969; Morton &
Patterson, 1980). We take the defining characteristic of alogogen to be that it is a representation of a word, with an
associated activity level, in which all of the information of a particular type relating to the word is packaged together.
In the logogen model, words are related to other words via information that is external to the logogens themselves.
In this way, logogens operate much like localist representations in connectionist networks (Feldman & Ballard, 1982;
McClelland & Rumelhart, 1981).

The attractor network which would appear to be closest to the updated logogen model of Morton and Patterson
(1980), as far as the process of reading via meaning is concerned, is the 40-80i network, in which attractors are built
at thelevel of the intermediate units between orthographic and semantic representations. However, amajor difference
between the logogen model and this attractor network should be noted. The similarity metric of the relation between
logogens is purely visual/orthographic. If the activation level of a second logogen is near to that of one that reaches
threshold then thisimplies only that the two represent stimuli that are visually similar. In contrast, the similarity metric
for attractorsis both visual and semantic. Thus, damage to attractors can produce both visual and semantic influence
in errors, while damage to logogens can result only in visual confusions.

However, a system in which semantics can feed back to influence the input logogens might also show semantic
errorsafter damage. Infact, ontheoutput side, Dell (1986, 1988) usesaninteractive system with localist lexical unitsto
model semantic and phonological influencesin speech production errors. One might imagine that an analogous system
on the input side would, under damage, replicate our findings of co-occurrences of visual, mixed visual-and-semantic,
and semantic errors under damage. To test this possibility, we developed a DBM model that maps orthography to
semanticsvia40intermediate unitswhich aretrained to belocalist lexical representations (each unit respondsto exactly
oneword and isinactive for al others). After lesions, the network produces explicit error ratesthat are higher than in
most of our simulations, but the increase is amost exclusively limited to other errors. While the rates of visual errors
are well above chance, the rates of semantic errors are only slightly above chance, even for lesions within semantics
itself (S&s lesions). Furthermore, the semantic errors are particularly idiosyncratic: over 20% of all semantic errors
is the particular error CAN ="“mug”. In fact, the responses “mug” and “bone” account for over half of al semantic
errors. Clearly this is an unsatisfactory account of the deep dyslexia error pattern, and nothing like what the DBM
with distributed intermediate representations shows. However, our failure at implementing a localist network that
reproduces deep dyslexia is only suggestive of the difficulties that others may encounter (cf. Martin, Saffran, Dell, &
Schwartz, Note 7).

A full consideration of the issue of localist vs. distributed representations is far beyond the scope of this paper
(for discussion, see Feldman, Fanty, & Goddard, 1988; Hinton et al., 1986). Here we raise only one general issue,
relating to the degree to which words can operate independently. In alocalist representation, words can influence other
parts of the system in a manner unrelated to the way similar words have influence (e.g., in generating a pronunciation
from semantics). Thisis a strong advantage because the meanings of words are arbitrarily related to their spelling and
pronunciation. For thisreason, reading for meaning isthe paradigmatic domain in which localist representationswoul d
appear most appropriate (Hinton et al., 1986). However, capturing the similarity among words involves maintaining
the similarity of their incoming and outgoing weights. In contrast, in a distributed representation words can have
effects only by virtue of their features, and so other wordstend to have similar effectsto the degree that they share those
features. The use of attractorsis away of compensating for this bias of distributed representations in domains where
it is problematic, but the underlying effects of similarity are revealed under damage. Thus, localist and distributed
representations are distinguished by what is natural for each approach, rather than by what is strictly possible or
impossible.

Extensions of the Approach

The connectionist account we have provided for deep dyslexia would seem to be directly generalizable in three ways.
Thefirst concerns other types of reading disorders, where processes operating between the orthographic and semantic
levels are relevant. Hinton and Shallice (1991) argued that aspects of semantic access dyslexia and pure alexia
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were explicable in terms of the model. In the context of the current simulations, we have also considered neglect
dyslexia (Caplan, 1987; Kinsbourne & Warrington, 1962; Sieroff, Pollatsek, & Posner, 1988; also see the special
issue of Cognitive Neuropsychology, 7(5-6), 1991, on “Neglect and the Peripheral Dydlexias’). Howard and Best
(Note 6) have recently described two patients of thistype. Both patients produce abnormally slow responsesto stimuli
on the right (contralesional) side after being miscued to the left, and make many more errors on the right parts of
words in reading, nearly all of which are visual in nature. Of particular interest is that these patients show marked
imageability/concreteness effects, especially for longer words. M.-P. de Partz (personal communication) has found
similar effects in another neglect dyslexic patient.

Mozer and Behrmann (1990) have modeled neglect dyslexia in terms of a connectionist network that operates
on principles similar to ours. On their model, neglect dyslexia is caused by an attentional deficit which results, on
average, in a gradient of activation over low-level visual representations of words. The activity is higher on the
ipsilesional side and diminishes monotonically to be lowest contralesionally. Our input network may be thought of
as a different implementation of the portions of their model that operate on these low-level representations, with our
clean-up pathway corresponding to their PULL-OUT net. We therefore considered the effect of presenting the intact
abstract/concrete network with monaotonically degraded input (activationsof 1.0, 0.83, 0.67, 0.5, across|etter unitsfrom
left to right, corrupted by normally distributed noise with standard deviation 0.1). Using analogous testing procedures
to those used in the abstract/concrete simulations, the output was 77% correct for concrete words but only 47% correct
for abstract words. In the predominant error form—visual errors—55% of thefirst and second letters were correct but
only 29% of thethird and fourth letters. Thus, the simulation shows the same combination of imageability and neglect
characteristics as do Howard and Best's patients.?” Hence, it seems plausible that the model could be utilized as part
of the explanation of the patterns of impairment shown by dyslexic patients other than the deep dyslexics with whom
this paper has been concerned.

The second plausible generalization of the approach is to other syndromes in which an input/output mapping can
be accomplished only via semantics. The two most obvious syndromes for which an analogous explanation could be
given are the parallels to deep dyslexiain the auditory domain (deep dysphasia) and in writing (deep dysgraphia).

Deep dysphasiainvolves the co-occurrence of semantic and phonological errorsin repetition, and a concrete word
superiority (see, e.g., Morton, 1980; Michel & Andreewsky, 1983; Howard & Franklin, 1988; Katz & Goodglass, 1990;
Martin & Saffran, 1990). In some patients (e.g., NC of Martin & Saffran, MK of Howard & Franklin), the parallel with
deep dyslexiais very close, asthe phonological errorsin oral repetition are normally phonologically related words. In
other patients (e.g., R of Michel & Andreewsky), responses which are phonologically related to the target are often
literal paraphasias. In general, though, this syndrome would fit with an explanation in which repetition must rely on
partially impaired semantic mediation, because damage has eliminated the standard, direct route from input phonology
to output phonology (see Morton, 1980; Howard & Franklin, 1988; Katz & Goodglass, 1990). Martin et a. (Note 7)
describe a connectionist simulation of deep dysphasia which embodies rather different assumptions from ours about
the origins of the patients' difficulties.

If semantic mediation in writing operates by principles analogous to those for reading, then the corresponding
pattern of symptoms would be expected to result from lesions. In fact, essentialy the same arguments that apply for
deep dyslexia also apply for deep dysgraphia (see, e.g., Bub & Kertesz, 1982; Newcombe & Marshall, 1984; Howard
& Franklin, 1988). Specifically, phonological mediation in writing isinoperative, and semantic mediation suffersfrom
damage complimentary to that in the reading processes simulated in current work.

Third and more generally, any domain that involves mapping between arbitrarily-related domains, analogous to
orthography and semantics, would be expected to give rise to error patterns that are analogous to those found in deep
dyslexia (except for aspects that are specific to orthography or semantics, such as the effects of abstractness). Along
these lines, Plaut and Shallice (in press) account for the semantic and perseverative influences in the visual naming
errors of optic aphasics by generalizing the current approach to the mapping from high-level visual representations of
objects to semantics.

The Impact of Connectionist Neuropsychology

Deep dyslexia was first described in a single patient, GR (Marshall & Newcombe, 1966), but it soon began to be
conceived as a symptom-complex (Marshall & Newcombe, 1973), and then as a syndrome—that is, as a collection of

2IThe patients produce virtually no semantic errors, whilethe simul ation produces some (but very few relative to thelesion simulations). However,
it should be noted that the patients may be able to make some use of orthographic-to-phonological process, not available to the network, to edit out
semantic errors.
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behaviors arising from a specific functional impairment (Coltheart, 1980a; Marshall & Newcombe, 1980). Almost
immediately this position was criticized. Morton and Patterson (1980) rejected the concept of a syndrome. Shallice
and Warrington (1980) argued that the pattern of symptoms could have anumber of different origins (also see Coltheart
& Funnell, 1987). Caramazza (1984) and Schwartz (1984) argued against the general methodology of assuming that
frequently observed combinations of symptoms represented the effects of a single underlying impairment. One of us
(Shallice, 1988a), while willing to accept syndromes based on dissociations, rejected errorsin particular as a fruitful
basis on which to generalize across patients. Even Coltheart, Patterson, and Marshall (1987), in their later review,
seem rather pessimistic about characterizing deep dyslexia as a syndrome, unless the right hemisphere theory were
correct.

The present investigation has both positive and negative theoretical implications for the validity of the concept of
a syndrome, in deep dyslexia and more generally (also see Shallice & Plaut, 1992). On the positive side, the work
was motivated by the possibility that deep dyslexiais indeed a coherent functional entity. However, there is acritical
differencein the nature of the functional entity as envisaged in the current research, and the formulation that has been
accepted, either implicitly or explicitly, both by critics (e.g., Caramazza, 1984, 1986) and by defenders (e.g., Coltheart,
1980a; Shallice, 19884) of the syndrome concept. According to this standard formulation, if a symptom-complex isto
be of theoretical interest, it must arise from the same functional lesion site for all patients who exhibit it. If it can be
demonstrated that some aspects of the symptom-complex do not always co-occur across patients, then thisisconsidered
evidence that the symptom-complex can arise from more than one locus of damage. The symptom-complex becomes
a “psychologically weak syndrome” and hence of little or no theoretical interest (see Caramazza, 1984; Coltheart,
1980g, for relevant discussion).

While this logic seems appropriate for theoretical analysesin terms of conventional “box-and-arrow” systems, the
present research shows that it is not appropriate for at least some connectionist systems. Part of the overall symptom
pattern may occur as a result of lesions in many parts of a complex system, for reasons that derive directly from the
nature of the computation that the whole system is carrying out. An example is given in the present simulations by
the qualitative similarity of error patterns whenever lesions are made between orthographic input and phonological
output. At the same time, other aspects of the symptom-complex may differ between lesion sites. Thus, lesions to
the clean-up network do not show the concrete word superiority effects shown by lesions to the direct pathway, even
though they produce the same patterns of visual and semantic similarity in errors. This meansthat, even when patients
differ in some respects, the aspects of their behavior that are similar may still arise from a common functional origin.
Thus, considering these patients together may be a valuable guide to understanding the impaired system. In this way,
even the existence of so-called “weak syndromes’ can be theoretically productive.

There is aso a negative side to the general methodological implications of the current simulations. Hinton and
Shallice (1991) showed that a “strong dissociation” (Shallice, 1988a) between the processing of different semantic
categories can occur when particular lesions are made to the clean-up pathway. The category foods was selectively
preserved in astriking manner. However, when lesions were made to a second network which was essentially the same
except for the use of a different random starting point for the learning procedure, the dissociation did not occur. The
present simulations show similarly dramatic effects when the same set of connections are lesioned, but again, minor
changesin architecture lead to different category effects: animalswere performed over 20 times better than body parts
for the 10-15d network, and over three times better than outdoor objects in the 40-40fb network. It would appear that
the strong dissociations obtained may reflect idiosyncrasies in the learning experience of particular networks.

Fifteen years ago, Marin, Saffran, and Schwartz (1976) responded to criticisms of the relevance of neuropsycho-
logical findings for understanding normal cognition by pointing to high-energy physics, where studying the effects of
random damage has produced substantial theoretical results. The results obtained in this paper, together with analyses
of equivalent depth that are beginning to be made of other syndromes as well, suggest that the analogy may be closer
than Marin and colleagues intended. If our simulations are valid, in principle even if not in detail, then neuropsycho-
logical evidence, such as the deep dyslexia syndrome, will provide strong support for a particular organization of the
cognitive system which would probably prove difficult to obtain by the use of experiments on normal subjects. On
the other hand, without detailed simulations, appropriate interpretations of many aspects of the syndrome would be
virtually impossible. In this case, cognitive neuropsychology will benefit most extensively from an interplay between
empirical and computational approaches in future work.
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Appendix: Deterministic Boltzmann Machines

Deterministic Boltzmann Machines (Peterson & Anderson, 1987; Hinton, 1989b) were originally derived asmean-field
approximations to stochastic Boltzmann Machines (Ackley et a., 1985; Hinton & Sejnowski, 1983). However, in
order to simplify the presentation we will describe only the deterministic version. The unitsin a DBM are closely
related to those in a back-propagation network. The output, or state 550 of each unit i at time ¢ isanonlinear function
of its summed input.
-1 1 1
o = 2s{17Y 4 (1 1) e (TZSE‘ )‘ww') )
J

Unit states change gradually over time, so that the new state is a weighted average (with proportion A = 0.6 for
our simulations) of the old state and the contribution from the new input. The hyperbolic tangent function “tanh” is
the symmetric version of the sigmoid function, ranging from —1 to 1 instead of Oto 1, and 7" is a parameter called

temperature that adjusts the sharpness of the sigmoid (see Figure .1). Also, each connection is bidirectional and each
weight is symmetric, so that w;; = wj;.
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Figure .1: The input-output function of unitsin aDBM for four different temperatures.

Energy Minimization

Asin aback-propagation network, input is presented to the network by clamping the states of some designated input
units. If the other unitsin the network update their states synchronously and repeatedly according to equation 1, it can
be shown (Hopfield, 1984) that the network will eventually settle into a set of states corresponding to a minimum of
the free energy function,

F=- Z s;sjwij + TZ (silogs; + (1 —s)log(1 — s)) (2)

i<

where s; = (s; + 1)/2. Thefirst term corresponds to the energy of the network, and measures the extent to which the
states of units satisfy the constraints imposed by the weights. If two units have a positive weight between them and
both have positive states (satisfying the constraint), the contribution of the weight to the energy will be positive, thus
reducing the total free energy. If the units have states of opposite sign (violating the constraint of the weight), their
contribution will be negative and will increase the free energy. The second term corresponds to the negative of the
entropy of the network (weighted by temperature), and measures the degree to which unit states are at their extremes.
At T = 1, the term for a unit has a minimum value of log(0.5) = —0.693 when the unit is least extreme (has a
state of 0) and approaches zero as the unit’ s state approaches +1. Minimizing the free energy /' amounts to finding
non-extreme unit states that satisfy the weight constraints.

It may help to think of a state spacethat is analogousto weight space, but has a dimension for the state of each unit
in the network, and an extra dimension for free energy. For agiven set of weights, each possible pattern of activity
over the units can be represented as a point in state space, whose height along the extra dimension corresponds to its
free energy. The entire set of these points forms an energy surface in state space, with hills and valleys, analogous
to the error surface in weight space (see Figure 11). The initial unit states define a starting point on this surface. As
each unit updates its state according to Equation 1, the pattern of activity of the network as awhole can be thought of
as descending along the energy surface to find a minimum. This minimum is exactly what we have been calling an
attractor, and the energy valley containing it, its basin of attraction.

Simulated Annealing

The network as defined thus far will always settle into some minimum of the free energy function £'. It is possible to
help it find a good minimum, with alow value of F', by varying the temperature 7" during settling. In particular, it is
useful to start 7" at avery high value 7;,,;¢, corresponding to avery flat sigmoid function, and then gradually reduce it,
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sharpening the sigmoid, to afinal value of 1. In our simulations, we use an exponential decay rate for 7',
T = 1+ Tippd' (3)

where T;,;; = 50 and d = 0.9. This procedure is the deterministic analogue of stochastic simulated annealing
(Kirkpatrick, Gelatt, & Vecchi, 1983), which isacommonly-used global optimization technique. It isalso called gain
variation (Hopfield & Tank, 1985; Nowlan, 1988) because the summed input of each unit is multiplied by a gain
factor of 1/7(!) that gradually increases during settling. The rationale for this procedure is that it provides a kind of
progressive refinement. At high temperature, the input to a unit must be very large for it to produce any significant
response (see Figure .1 for 7' = 20). Thus, only the unitsthat are most strongly constrained to have positive or negative
statesinitially become active. Asthetemperatureislowered, unitsrequire lessinput to become active, and so become
sensitive to weaker constraints. Only near the end of annealing do very subtle constraints have influence.

The settling processin aDBM isanalogousto the forward passin back-propagation, in the sense that both compute
aset of output states for a given input. However, the existence of awell-defined energy function that characterizesthis
process is amajor advantage of a DBM. Whileit is possible to compute the value of F' for the states and weightsin a
back-propagation network, there is no direct relationship between this value and the actual operation of the network.
In contrast, the value of F' for aDBM, either during settling or at a minimum, provides a direct measure of how well
the network is satisfying the constraints of the task. Furthermore, it is possible to compute F' separately for different
sets of connections and units. This makes it possible to locate where in the network constraints are being violated
when it produces an error under damage.

Another advantage of a DBM over the type of back-propagation network we have used thus far is that the
settling process is much more gradual—typicaly involving a hundred or so iterations, compared with 14 for the
back-propagation networks. While this significantly increases the computational demands of simulations, it enables a
much finer-grained analysis of the time-course of processing aninput. For example, we can compare the “goodness’ of
the semantic and phonological representations (defined in terms of free energy) throughout the course of pronouncing
aword. However, the need for long settling times may make the procedure somewhat less biologically plausible,
since individual neurons can generate only about 100 spikes in the time required by humans to interpret visual input
(Feldman & Ballard, 1982).

Contrastive Hebbian Learning

Initialy, the weights in the network are set to small random values (between +0.5 in our simulations). When an
input is presented, the network will settle into a minimum of ', perhaps even the best possible minimum if simulated
annealing is used. However, because the weights are random, the states of the output units at this minimum are very
unlikely to correspond to their correct states for thisinput. Thus, we need a procedure for adjusting the weights in the
network to make it more likely that the minimum that the network settles into given some input has the appropriate
output unit states.

Thelearning procedure for aDBM is remarkably simple and intuitive, although its derivation is beyond the scope
of this paper. Itisdirectly analogousto the corresponding procedure for stochastic Boltzmann Machines (Ackley et al.,
1985). It takes the form of a negative phase and a positive phase for each input. The negative phaseis just the settling
process described above: the states of the input units are clamped and the network is annealed to settle into a set of
states corresponding to a free energy minimum. The positive phaseis run exactly like the negative phase except that,
in addition to clamping the input units, the output units are clamped into their correct states. Intuitively, the positive
phase amounts to guiding the network to produce the correct response, and the negative phase amounts to letting the
network try to produce the correct response on its own.

If the network has learned the task, the states of the output units should be the same in the positive and negative
phases. We will use s to designate the state of unit i at the minimum for the negative phase, and s} for its state at
the minimum for the positive phase. If each weight is changed according to

wi; =€ (5;" 5;' -5 SJ_) (4)
then, for small enough ¢, the network performs steepest descent (in weight space) in an information-theoreti c measure
G of the difference between the output unit states in the positive and negative phases (Hinton, 1989b).28 The form of

this learning rule is simply the product of unit states in the positive phase minus their product in the negative phase.

28 actually, this is only true if, in the negative phase, the probability of an output vector given an input vector is defined in terms of the free
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This makes sense if we think of the states in the positive phase as roughly corresponding to correct behavior, and
remember the discussion above on how states and weights contribute to the total free energy. If the states of the two
units in the positive phase are either both positive or both negative, it is good (i.e. lowers the energy) for the weight to
be positive, and it isincremented. We subtract off the product for the incorrect performance in the negative phase. If
the product is not as high in this phase as in the positive phase, the net weight change will be positive. Thisincrease
in the weight will make it more likely in the future for one unit to be active when the other is active, thus increasing
the product of their states. In thisway, learning can be thought of as shaping the energy surface, lowering the surface
(decreasing the energy) for good combinations of states and raising it for bad ones. These changes make it morelikely
that the network will settle into a good minimum on the next presentation of the input.

Contrastive Hebbian learning is more biologically plausible than back-propagation for a number of reasons.
Although the procedure still requires information about the correct states of output units, this information is used in
the same way as information about the input—that is, by propagating weighted unit activities, rather than passing
error derivatives backward across connections. This difference makes it easier for one part of alarge DBM to train
another, if the first part can appropriately set the states of the output units of the second part. In addition, there is
direct neurophysiological evidence for a Hebbian learning mechanism in at least some parts of the brain (Cotman &
Monaghan, 1988; Dudai, 1989). Although the need for symmetric weights is of some concern, connection pathways
between brain areas are virtually always reciprocal (Van Essen, 1985), and initially asymmetric weights gradually
become symmetric if they are given a dight tendency to spontaneously decay towards zero (Galland & Hinton, Note 2;
Hinton, 1989b).

Although contrastive Hebbian learning in a DBM is a relatively new learning paradigm, it has been applied to
problems of moderate size with reasonable success (Galland & Hinton, Note 3; Peterson & Hartman, Note 9). In
general, the number of required training presentations is comparable to that for back-propagation, although a DBM
can require considerably more computation in processing each example due to its more gradual settling process.

energies of the minima that the network actually settles to in the positive and negative phases, rather than by interpreting the real-valued output
vector as representing a probability distribution over possible binary output vectors under a maximum entropy assumption (i.e. that the unit states
represent independent probabilities).
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