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Abstract

B8 Alihough perseveration-the inapproprizte repetition of
previous responses-—is qulie common among patients with
neurofogical damage, relatively few detailed computational sc-
counis of its various forms have been put forth A particularly
well-documented variety involves the pattern of errors made
by "optic aphasic” patients, who have a selective deficit in
naming visually presented objects Based on our previcus work
in modeling impaired reading via meaning in deep dysiexia,
we develop a connectionist simulation of visual object naming
The major extension in the present work is the incorporation
of short-term correlational weights that bias the neowork to-
wards reproducing paterns of activity that have occurred on
recenily preceding trials Under damage, the network replicates
the complex semantic and perseverative effects found in the

INTRODUCTION

In neuropsychology, “perseveration” refers to the contin-
uation or repetition of an activity or percept when the
eliciting stimulus is no longer present and typically when
it has been replaced by a different one It is very com-
monly observed For example, Helmick and Berg (1976),
who used a variety of wsks involving naming, drawing,
defining, and the like, found that responses on 10% of
wials for a group of 30 brain-damaged patients were
some form of perseveration

Virtually the entire gamut of behaviors tested in neu-
rological patients can give rise to perseverations At the
more peripheral end of the range are visual persevera-
tions (palinopsias), most frequently found after right oc-
cipital or parieto-occipital lesions (Hécaen & Angeler-
gues, 1963) They involve the reappearance of percepts
when the object thar gave rise to them is no longer
present By contrast, at the central end of the range are
what Sandson and Albert (1984) call “stuck-in-set” per-
severations observed after frontal lesions in tasks such
as Wisconsin Card Sorting, where the patient has to
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optic aphasic error pattern Further analysis reveals thas the
perseverative effects are strongest when the lesions are near
or within semantics, and are relatively mild when the preceding
object evakes no response Like optic aphasics, the nerwork
produces predominantly semantic rather than visual errors be-
cause, in contrast to reading, there is some structure in the
mapping from visual to semantic representations for objects
viewed together with the dyslexia simulations, the replication
of complex empirical phenomena concerning impaired visual
comprehension hased on a smail set of general connectionist
principles strongly suggests that these principles provide im-
portaat insights into the nature of semantic processing of visual
information and its breakdown following brain damage B

switch from sorting cards by one rule {eg, shape) to
sotting by ancther (e g, number) without an instruction
as to which rule has become the correct one On this
sk, frontal patients tend to continue sorting by the
previously correct rule (Milner, 1963)

Stuck-in-set perseveration has recentdy been analyzed
from a theoretical perspective (see Dehaene & Chan-
geux, 1991; Levine & Prueitt, 1989; Shallice, 1982) How-
gver, a5 Sandson and Albert (1984) have pointed out, the
sets of behaviors termed “perseverative” are functionally
heterogeneous No other type of perseveration has re-
ceived 2 computational analysis In this paper, we analyze
a second major subtype of perseveration, called by Sand-
son and Albert “recurrent perseveration,” which they
hold to be related anatomically to posterior lefi hemi-
sphere damage It is the unintentional repetition of a
previous response to a subsequent stimulus Thus, the
patient described by Lhermiue and Beauvois (1973)
named a comb correctly, but then named a fork that was
presented on the subsequent trial as a comb as well

There are relatively few demiled empirical analyses of
the performance of patients showing strong persevera-
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tive tendencies of this wpe However, one group of dis-
orders provides a clear exception and is therefore a good
candidate for more detiled modeling These are the
selective problems in naming simuli presented in one
particular modality, of which an example was given
above They can arise after posterior jesions to the left
hemisphere

A common way of clussifying such disorders where
the problem is specific to the visual modality is o dif-
ferentiute berween associative visual agnosia and optic
aphasia, with the former being i difficulty in recognizing
visually presented objects and the latter a difficulty in
naming them (see, eg, Beauvois, 1982; Farah, 1990;
McCarthy & Warrington, 1990) There are, however, 4
varieny of views on the relation between these disorders
{see, e g, Beauvois, 1982; Humphreys & Riddoch, 1987)
and, indeed, on the refation between associdtive agnosia
and the disorder with which it is standardly contrasted,
namely apperceptive agnosia (see, eg, Farah, 1990
McCarthy & Warrington, 1990) Quite a number of au-
thors see no substantal difference between associative
agnosia and optic aphasia, but they disagree as 1o which
is primary Thus, some view optic aphasia as being
merely a subtie form of agnosia (Goodglass, Barton, &
Kaplan, 1908; Rubens, 1979) Other authors, however,
argue that visual perception is intact in optic aphasics
Indeed, such patients can ofien mime appropriately the
use of an object they cannot name (Gil, Pluchon, Toulla,
Michenau, Rogez, & Levevre, 1985: Lhermitie & Beauvois,
1973; Riddoch & Humphreys, 1987) but debate continues
as o whether satisfactory performance of such tasks re-
quires identification of the object, or whether they can
be carried out by some mix of superordinate knowledge
and structaral descriptions (see Farah, 1990; Riddoch &
Humphreyvs, 1987, Shallice, 1988a) Finally, some authors
deny the autonomy of associative agnosia, viewing it as
either a subtle apperceptive agnosia (e g, Farah, 1990)
or an optic aphasia (e g, Geshwind, 1963)

Whether or not associative agnosia and optic aphasia
should be distinguished, a recent review {lorio, Falanga,
Fragassi, & Grossi, 1992) shows that patients with pos-
terior left hemisphere lesions who have been catego-
rized as exhibiting one or the other syndrome produce
very similar paterns of errors (see Table 1) Typically,

Table 1. Cases Reviewed by lorio et al (1992) for Whom the
Diagnostic Category and Location of Lesion

they produce semantic errors (e g, needle — “thread”),
perseverdtive errors {needle — “cat” after naming a cat),
and unrelated errors {e.g, needle ~» “house”) We will
call this the “optic aphasic” error pattern Some also
produce what lorio and colleagues call “confabulations,”
but which Beauvois (1982) describes as “a peculiar min-
gling of semantic errors, perseverations, and descriptions
of morphological features of the object " Visual errors
(e g, needie - "toothpick™) are less frequentdy recorded
By contrast, aimost all patients with bilateral lesions who
were clinically dingnosed as associative agnosic pro-
duced predominantdy visual errors

In this paper we will be concerned with modeling
petseveration in the visual and semantic processes be-
vonrd the level of structurad descriptions In general, as-
sociative agnosic and optic aphasic  patients  appea:
relevant. Some authors, however, have used the term
“ussociative agnosia” to encompass patients with subtle
problems at the structural description level (see Farah,
1990, for discussion) In addition, agnosic problems aris-
ing from right hemisphere or bilateral lesions are wpi-
cally assumed 10 be ar or before that level (see, eg,
Humphreys & Riddoch, 1987; McCarthy & Warrington,
1986) Therefore, for a relevant patient database on
which to test a model of the appropriate levels of per-
ceptual and semantic processing, we will restrict consid-
eration @ associative agnasics with feft hemisphere
lesions and optic aphasic patients, who all have left hemi-
sphere lestons!

As far as these left posterior patients are concerned,
there are only two clear exceptions who do not show
the optic aphasic error pattern: associative agnosic FRA
(McCarthy & Warrington, 1986), who made anly super-
ordinate errors, and an optic aphasic patient described
by Coslett and Saffran (1989), who made unrelated errors
almost exclusively These patients witl be considered in
the Discussion

The most detaited account of a patient with a specific
visual naming difficulty who exhibited a semantic and
perseverative error pattern was provided by Lhermiste
and Beauvois (1973) for their patient JF, who had bad a
left posterior cerebral artery infarct JF was virtuaily nor-
mal at naming from verbal description (4% errors) and
from touch (8% errors) but made many maore errors at

Types of Naming Errors Are Reported, Subdivided According 1o

Error INipe

Cases Visual Semciritic Perseverative Confabudations
Bilateral considered 10 90 20 10 0
“visual associative agnosic’
Unilateral (feft) considered 8 42 84 88 50
"visual associative agnosic
"Optic aphasic 10 40 100 80 40
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naming pictures (28% errors) and objecs (23%) Lher-
mitte andd Beauvois {1973} identified twvo apparent influ-
ences on the error responses-—"horizontal” ones directly
from the stimuius, and “vertical” ones from an carlier
stimulus (i e, errors showing some perseverative effect)
Table 2 shows the influences apparent in errors made
by JF on naming 100 pictures and 30 objects In a further
experiment, where 320 color and black-and-white pic-
tures were presented and 176 errors were made, the rate
of errors with a vertical influence remained high {over
50% of all errors) and varted iitde with picture wpe
These perseverations were mainly mixed with other
types of error The ratio of semantic errors to visual
errors varied with the type of piciure, being greater with
more complex colored pictures than with black-and-
white sketches

Given the existence of such a well-documented patient
who shows the optic aphasic error pattern, together with
the variety of descriptions of other padents who have
quaiitatively similar error patterns, it is appropriate 1o
consider how the errors arise There has, however, been
virtually no discussion of this issue Riddoch and Hum-
phreys (1987) discuss the relevance of the high rue of
mixed visual-and-semantic errors in their optic aphasic
patient, JB, but as he made few perseveraive errors they
do not discuss that critical aspect of the symptom pattern

By comtrast, most thearetical discussion has focused
on the overall pattern of performance exhibited by optic
aphasic and associative agnosic patients At least two ex-
planations have been offered for associative agnosia One

Table 2. Errors Mude by JF in Two Experiments”

100 30
Pictures  Objects
Horizonl errors
Semantic
{eg, shoe — “hat’) 9 3
Visual
{eg, coffee beans — “hazel nuts™) 2 1
Mixed visual-and-semantic
{eg, orange - “lemon ) 6 i
Vertical errors
hem and coordinae perseveration
(eg, 126 — “wristwatch’
127 scissors — “wristwalch
(eg, 144 - Rewspaper’
T45 case — “two hooks™} 8 Z
Mixed horizomal/vertical errors
{eg,T48  — “chair”
147 besket — “cane chair”
153 string - "sirand of weaved
cane’) 3 0

“From Lhermite and Beauvois (1973)

is degradation of the representations in 2 partially separ-
able "visual” semantic svstem (e g, McCarthy and War-
rington, 1986) The other is the existence of & subtle
impairment in visual percepwual processing (Farah,
1990)

Five possible accounts have been suggested for optic
aphasia Ratcliff and Newcombe (1982) have argued that
there is a “direct” route from visual perceprual process-
ing to naming, analogous to the lexical nonsemantic
route from orthographic to pheonological processing in
reading (Morton & Patterson, 19890; Schwartz, Saffran, &
Marin, 1980) However, there is no independent evidence
for the existence of such a route (see Howard & Franklin,
1988)

A second explanation {eg, Beauvois, 1982) is that
semantics is not a unitary entity, but is separated into
“visuat” and “verbal” components Visual inpur can di-
rectly access only visual semantics, and naming can be
based only on verbal semantics Visual object naming
requires cormmunication from visual wo verbal semantics;
optic aphasia arises naturally from a disconnection be-
tween them Intact gesturing and categorization can be
based on visual semantics, while intact auditary recog-
nition is based on direct access to verbal semantics The
main problem with this account concerns the adequacy
of the concept “visual semantics” (for discussion, see
Caramazza, Hillis, Rapp, & Romani, 1990; Riddoch, Hum-
phreys, Coltheart, & Funneil, 1988, Shallice, 1988:x; 1993)

A related proposal {Coslernt & Saffran, 1989} is that
semantics is divided not by modality but by bemisphere,
with naming only supported in the left hemisphere On
this hypothesis, optic aphasia arises when visual input
from both bemispheres is disconnected from left-hemi-
sphere semantics, with residual comprehension sub-
served by right-hemisphere semantics In essence, this
theory parailels the right-hemisphere hypothesis for
reading in deep dysiexia (Coltheart, 1980; 1983; Saffran,
Boveo, Schwartz, & Marin, 1980) and shares many of its
strengths and weaknesses (see Coltheart, Parterson, &

Marshall, 1987 Patterson & Besner, 1984; Shallice, . . -

1988a) k
Yet another account of optic aphasia (Gordon, 1982;
Murgolin, Marcel, & Carlson, 1983; Rubens, 1979) locates” -/
the impairment to the wansmission of information from
visual perceptual processing to a unitary semantics, and
challenges the claim that recognition is intact in these-
patients On this approach, optic aphasia would amiount

10 a type of “semantic access agnosia” (Riddoch & Hum- - "
phreys, 1987). We return to the issue of the intactness of .-~

recognition in optic aphasic patients in the Discussion:.
A final, more recent proposal (Farah, 1990) hypoth-

esizes that optic aphasics have rwo partial lesions, one

between vision and semantics, and the other between
semantics and naming. Each separate impairment is suf-
ficiently mild to allow reasonable performance on ges-
turing or tactife naming, but tasks that require both
pathways—visual naming—would be much more dras-
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tically impaired The explanation for the disproportion-
ate naming impairment hinges on the notion that an
interactive connectionist system would be sufficiently ro-
bust under each partial lesion alone, but would show
superadditive impairment under the combined lesions
Unfortunately, preliminary simulations exploring this
nossibility, carried out by one of us (DP) in collaboration
with M Farah, have been unsuccessful to date

None of these proposals for explaining the overail
patterny of performance across tasks in optic aphasia is
completely satisfactory—each involves either ad hoc as-
sumptions or insufficiently supported claims From the
present perspective they have an even more serious dis-
advantage—they ail focus on explaining the dissociation
berween impaired naming and (relatively) intact recog-
nition, but have little o say abour other characteristics
of the disorder—in particular, the wpes of errors the
patients make in naming

in the present paper we will therefore reverse the
standard explanatory emphasis We will be concerned
with providing an account of the error pauern exhibited
in optic aphasia Any dissociation between naming and
recognition (as demonstated, for example, by mime)
will be treated as a secondary issue The error pattern,
as pointed out earlier, is actually found not only in optic
aphasic patients, but also in most left hemisphere patients
described as associative agnosic We refer 1o it as the
optic aphasic error pattern for simplicity Possible differ-

ences berween these disorders in the overall pattern of

performance will be ignored until the Discussion, and
an explanation of the error patern thar might apply to
both disorders will be sought

The approach we will take is most closely related to
the theoretical position of Riddoch and Humphreys
(1987) in thas we will assume that the error patteérn drises
from @t besion that impairs the generation of semantics
from visual structural descriptions, and that this process
operates on a "cascade” principle (i e, levels continually
pass on partial information throughout their computa-
tion—see McClelland, 1979) 2 However, 10 explain the
error pattern we need to assume thar the visual-to-se-
mantics process can be effectively modeled in connec-
tionist terms  Support for this approach comes from our
recent work in modeling reading via meaning in patients
with “deep dyslexia” (Hinton & Shallice, 1991; Plaut &
Shailice, 1991a,b; 1993)

CONNECTIONIST MODELING OF
IMPAIRED VISUAL COMPREHENSION

Deep dyslexic patients can pronounce written words
only by first accessing their meaning, and typically make
errors in this process (e g, misreading the word RIVER a3
“ocean”) In addition to these “semantic” errors, a num-
ber of other error types occur: visual (eg, SWORD -~
“words"), derivational (e g, GrowN - “growing”), visual-
and-semantic (e.g.,; TROUBLE — “terrible”), and visual-
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then-semantic (e g , syMpATHY — “orchestia,” presumably
via spmphony) Furthermore, these patients exhibit a va-
riety of other symptoms, including an effect of pare-of-
speech in correct performance {nouns > adiectives >
verbs > funcion words), better performance on con-
crete, highly imageable words than on abstract, less im-
ageable words, and an inability to read pronounceable
nonwords

Through a series of simulation experiments carried
out in collaboration with G Hinton {Hinton & Shallice,
1991; Plaut & Shallice, 1991a,b; 1993), we have demon-
strated that the characteristics of deep dysiexia arise
when systems of a particular type ate lesioned in virtually
any part. The systems are those that have the following
characteristics:

1 Orthographic and semantic representations are dis-
wibuted over separate groups of units, such that similar
patterns represent similar words in each domain, but
similarity is unrelated between domains

2 Connection weights are learned by a procedure for
performing gradient descent in some measure of per-
formance on the task of mapping orthography 1o seman-
tics

3 Mapping orthography t semantics is accomplished
through the operation of “attractors ™

4 The semantic representations of concrete words are
much “richer” than thase of abstract words (i e, contain
considerably more consistently accessed features)

Figure 1 shows the architecture of the network used
by Hinton and Shailice (1991) Orthography is repre-
sented in terms of four groups of “grapheme” units, in
which each unit represents a particular letter at a partic-
ular position within the word (McCleliand & Rumelhart,
1981) The semantics of each word is described in terms
of predetermined semantic features designed w caprure
intuitive semantic distinctions The network has two main
pathways: (1) a “direct” pathway, from grapheme units
o semantic units via intermediate units, and (2) a “clean-

g=>c
P A GR
( B0 tlean-up units ) C £8 semantic unils )
= e

( winemedatgonts )

26 graphems units

Figure 1. IThe network used by Hinton and Shallice (1991) Arrows
represent sets of connections Ui are lesioned Notice thit sets of
connections are labeled with the initials of the names of the source
and destinuion unit groups {e g G—1 for grapbeme-to-intermediate
connections} Only 253% of the possibie connections in each pathway
were included However, additonal direct connections were added
ameng semantic units that represent closely related feaures
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up” pathway, from the semantic units to clean-up units
and back to the semantic units The direct pathway gen-
erates initial semantic activity fromt visual input. The
clean-up pathway ireratively refines this initial activity
into the exact correct semantics of the word

The nerwork was initialized to have small random
weights, so that at the beginning of training the pattern
of semantic activity produced by the word was quite
different from its correct semaatics An iterative version
of the backpropagation learning procedure, known as
“backpropagation through time” (Rumelhar:, Hinton, &
Williams, 1986; Williams & Peng, 1990, see Appendix A},
was used to train the nerwork to activate each semantic
unit to within 0 1 of its correct value for each word

Afier maining, the neswork was systematically “le-
sioned” by either removing some units or connections,
or by adding random noise 10 the weights As a result of
this damage, the semantics produced by the network
ypically differs somewhat from the exact semantics of
the presenred word Hinton and Shallice (1991) defined
certain criteria that had to be satisfied by the corrupted
semantics in order for the damaged nerwork 1o be con-
sidered o have made a response Figure 2 shows the
distribution of error wpes for discorection lesions of
each main set of connections Lestons throughout the
network reproduce the cooccurrence of semantic, visual,
and mixed visual-and-semantic errors found in deep dys-
lexia

More recently, we have extended these initial findings
in two ways (Plaur & Shallice, 1991a,b; 1993) First, we
have established the generality of the deep dyslexic error
pattern by showing that it does not depend on peculiar
characteristics of the nerwork architecture, the learning
procedure, or the way responses are generated from
semantic activity Second, we have extended the ap-
proich to account for many of the remaining character-
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Figure 2. The distribution of error wypes produced by disconnec-
tion lesions that resudted in 25-75% correct performance in the
madel, as well as the distribution of tvpes for error responses chosen
randomly from the word set The absolute height of the “Chance”
distribution is arbitrary—ontly the relative rates are informative The
number of lesion severities included in the calculaton of error rates
is indicated in parentheses below the label for each lesion location

istics of deep dyslexia, including the effects of
concreteness/imageability and their interaction with vis-
ual errors, the occurrence of visual-then-semantic errors,
greater confidence in visual as compared with semantic
errors, relatively preserved lexical decision with im-
paired naming, and the existence of different subvarieties
of deep dyslexin

A critical concept in understanding these results is that
of an “atractor” The semantic units in the newwork
change their states over time in response o a partcular
orthographic input The initial pattern of semantic activity
generated by the direct pathway may be quite different
from the exact semantics of the word Interactions among
semantic units, either directly via connections among
themselves, or indirectly via the clean-up units, serve to
gradually modify and “clean-up” the initial pattern into
the final, correct pattern This process can be concep-
twalized in terms of movement in the high-dimensional
space of possible semantic representations, in which the
state of each semantic unit is represented along a sepa-
rate dimension At any instant in processing a word, the
entire pattern of activity over the semantic units corre-
sponds to a particular point in semantic space The exact
meanings of familiar words correspond o other points
in the space The states of semantic units change over
time in such a way that the point representing the current
pattern of semangic activiey “moves” 1o the point repre-
senting the nearest familiar meaning In other woids, the
pattern corresponding 1o each known word meaning
becomes an “attractor” in the space of semaatic repre-
sentations: patterns for nearby but unfamiliar meanings
move toward the exact pauern of the nearest known
meaning The region in semantic space corresponding
1o the set of initial paierns that move 1o a given awractor
is called #ts "basin” of atraczion As a result of damage
10 the network, the initial semantic patern generated by
a word may be "captured” within the basin of a related
word (see Fig 3) Since the layout of attractor basins
must be sensitive to both visual and semantic similarity,
these metrics are reflected in the types of errors that
occur as a result of damage

Our ability to account for a number of aspects of deep
dyslexia, and in particular the cooccurrence of a number
of different types of error, using a connectionist model
based on artractors suggests that a related approach may
be possible for another neuropsychological error pat-
tern, that of optic aphasia

SHORT-TERM CORREILATION WEIGHTS

The cooccurrence of visual, semantic, and mixed visual-
and-semantic errors in deep dyslexic reading would ap-
pear 1 be analogous to the optic aphasic error patiern
in object naming, suggesting a natural account of the
latter in terms of a network that maps visual represen-
taons onio semantic representations using attractors
However, the perseverative effects in optic aphasia, and
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Figure 3. How damige 10 senyinte auraciors cn cause o visual er-
ror Points in each space correspond 1o particular paterns of activity
over the corresponding group of units The solid ovals depict the
norml basing of atraction; the dotted one depicts a basia afier se-
mantic damage

their interactions with semantic effects, are less straiglu-
forward In the dyslexia simulations, the networks were
completely reset before the presentation of each word—
there was no opportunity for the response to one stim-
ulus to influence responses o subsequent stimuli. Ac-
counting for the perseverative effects in optic aphasia
requires an elaboration of the compurational formalism

There are many possible ways of introducing effects
of the temporal order of stimulus presentation into con-
nectionist networks Perhaps the simplest would be 1o
process each object beginning from the set of unit states
corresponding to the interpretation of the previous ob-
ject, rather than resetting the network However, persev-
erative effects in optic aphasics can span intervening
objects (Lhermite & Beauvois, 1973), which would be
difficuit to account for solely in terms of sustained activity
across object presentations (see also Joordens & Besner,
1992)

The approach we adopt involves introducing short-
term weights that depend on the recent correlations
berween unit states These weiglits augment the standard
long-term weights that are slowly modified over the
cousse of learning In particular, each connection is given
a second weight whose value is an exponentially decay-
ing weighted average over stimulus presentations of the
correlation of the states of the units it connects More
formally, if s, and s; are the states of units 7 and / after
processing stimulus 27 — 1, then the short-term correla-
tional weight ¢; on the connection from 7 to 7 is set
according to

A= hsist 4 (1 = M (1)

where s/ = 25 — 1 {(scaling each unit state o range
beween 1) and X is the exponential weighting propor-
tion (05 in our simulations) Both the long-term and
short-term weiglhts contribute to how units interact Spe-
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cificaily, in processing the next simulus 77, the summed
input Ay to each unit j at iteration ¢ becomes

W= 59 (w0, + vl (
i

where vy badances the contribution of the short-term
weights relative to the long-term weights (01 in our
simulations; ¢f Eq (3), Appendix A] The short-term
weights must be kept relatively small so that the standard
weights can solve the task regardless of how the short-
term weights are set The states of units are computed
from their summed input according to the seandard sig-
moid function [see Eq {(4), Appendix A] Notice that the
shortterm weighis do not change over iterations in pro-
cessing a stimulus, but change only once the network
has seuled The effect of the short-term weights is to bias
the nerwork toward recently occurring patterns of activ-
ity Although our simulations involve backpropagation
networks that do not formally minimize an energy func-
tion (¢f. Hopfield, 1982), it may help to think of the
shoreterm weights as temporarily lowering the energy
{improving the “goodness”) of the minimum corre-
sponding 1o the previous stimulus

There is independent computational and empirical
motivation for introducing shoreterm weights In the
domain of object recognition, the most common use of
short-term interactions among units is to emporarily
bind together combinations of visual features into 4 co-
herent whole {Crick, 1984; von der Malsburg, 1981, 1988,
vor der Malsburg & Schineider, 1986) The recent dis-
covery of synchronized oscillations in the responses of
visual cortical cells 1o disioint moving contours of a single
ohject (Eckhorn, Bauer, Jordan, Brosh, Kruse, Munk, &
Reithoek, 1988; Engel, Konig, Gray, & Singer, 1990; Gray,
Konig, Engel, & Singer, 1989) has led to the development
of a number of models of synchronized neuronal activity
for feature binding involving shortterm  interactions
among units (Atiya & Baldi, 1989, Baldi & Meir, 1990,
Bush & Douglas, 1991; Eckhorn, Reitboek, Ardni, &
Dicke, 1989; Horn, Sagi, & Usher, 1991; Hummel & Bied-
erman, 1992; Kammen, Koch, & Holmes, 1990; Konig &
Shillen, 1991; Lytton & Sejnowski, 1991; Sompolinsky,
Golomb, & Kleinfeld, 1989; Sporns, Gally, Reeke, & Edel-
man, 1989; Wilson & Bower, 1990}

Short-lerm weights have other interesting computa-
tional properties Learning with short-term weights can
minimize the interference to old knowledge caused by
new learning, and can rapidly recover the old knowledge
by canceling out this interference (Hinton and Plaut,
1987} Although the procedure employed by Hinton &
Plaut for changing the short-term weights depends on
the erzor on the task rather than directly on the states of
units themselves, & bins woward previous interpretations
would arise if both short- and long-term weights were
updated after every stimulus presentation (McClelland &
Rumelhart, 1985) Hinton {personal communication, de-
scribed in McClelland & Kawamoto, 1986) demonstrated

b
—

Volime 5, Nuwmber 1




how 1o use shor-term weights to implement recursion
in a network that draws shapes composed of other
shapes The long-term weights hoid the knowledge about
how o draw shapes The short-term weights hold context
information about what 1o draw next once the network
is finished with drawing the current shape Thus, the
short-term weights function like a “stack” that can rein-
state the calling context once a drawing “subrouting”
returns  Shortterm interactions have also been em-
ploved for recruitment of units during learning (Feld-
man, 1982)

Short-term weights are also useful in accounting for
empirical phenomena in cognitive psychology The most
obvicus of these are repetition and semantic priming
effects, both in normals (Colling & Quillian, 1969; Man-
dler, 1980; Mever & Schvaneveldt, 1976) and amnesics
{for a review, see Shimamura, 1986) McCleland and
Rumelhart (1983) simulate a range of priming effects
with immediate changes directly to the long-term weights
rather than 10 a separate set of short-term weights, al-
though the same results would also hold in the lawer
case (see also Mclaren et al, 1989} Another appropriate
domain involves shortterm memory and its consolida-
tion inte long-term memory (e g, Guardner-Medwin,
1989) Gaebel {1990} suggests how 1o use rapidly chang-
ing correlational weights for serial rehearsal in short-
term memory {see also Schmidhuber, 1992) Cleeremans
and McClelland (1991) show how short-term weights can
account for the temporary biases of subjects in learning
ro respond to structured event sequences This last work
is particularly interesting because it involves specific
hiases toward recently ocourring associations berween
stimuli, above and beyond the bias changes for the in-
dividual stimuli themselves This suggests that the short-
term mechanism involves weights between units rather
thary, or in addition to, simple tweshold changes for
individual units (cf Morton, 1969)

At a neurophysiological level, &t has been known for
some time {e g, Kupferman, 197%; Harzell, 1981) that
changes in synaptic efficacy at a single synapse occur at
many different time scales A great deal of recent research
has elucidated the neurobiological mechanisms of asso-
ciative learning in the form of long-term potentiation
(LTP, Bliss & Lomao, 1973; Lynch, McGaugh, & Weinber-
ger, 1984; Cotnan & Monaghan, 1988), also known as
long-term enhancement (LTE, McNaughton, 1982; Mc-
Naughton & Motris, 1987) LTE differs mechanistically
from non-associative forms of shortterm potentiation
{(McNaughton, 1983) and decays with a range of time-
constangs (Barnes & McNaughton, 1980) The rapidly de-
caying components of LTE could naturaily implement the
type of learning carried out by the shorr-term weights in
our network

Thus, there is some independent motivation for ex-
tending the computational formalism to include short-
term correlational weights as a means of introducing
temporal interactions berween successive stimuli How-

ever, it should be kept in mind that in the current context
we are extending the formalism in direct response 10
the observation of perseverations in optic aphasia, and
it is in this sense rather ad hoc For this reason, the
simple occurrence of perseverations in the nerwork
should be viewed as less interesting than the interactions
of these perseverative effects with other aspects of the
nerwork's hehavior, which are not inherent in the exten-
sion of the formalism

A SIMULATION OF IMPAIRED OBJECT
NAMING

Following the dyslexia simulation, we develop a network
for mapping visual representations of objects onto se-
mantic representations, and compare its behavior under
damage with that of optic aphasics We begin by describ-
ing the deils of the rask the nerwork is 1o perform We
then describe the network architecture and the proce-
dure by which it is trained Following this, we compare
the behavior of the network under damage with the
hehavior of optic aphasics in visual object naming tasks

The Task

Forty objects were chosen from four categories of indoor
objecis: kitchen objects, office objects, furniture, and
100ls (see Table 3) We first summarize their visual (in-
put) representations, and then their semantic (output)
representations The full details of these representations
are presented in Appendix B

The input representation for objects was designed 0
coarsely approximate the kind of visual information that
would be available for the purposes of abjea recogni-
tion The representation of each object loosely corie-
sponds w0 a structural description (Marr & Nishihara,
1978; Paimer, 1977), augmented with information about
color, texture, absolute size, and more general visual
characteristics of the object Table 4 lists the type of
information represented by each of the 44 visual features

Table 3. The Objects Used in the Simulations

Objfects in Eacl Category

Kitchern Gffice

Obyjects Objects Furniture Tools
cip pen chair s
spoon file table nail
pan paper bed plane
Jork book sofa rutler
knife disk stool screte
bouw! tape rug aef
can Steamip radio axe
plate board tele boft
dish glne divan net
Glass nk desk vice
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Table 4. The Type of Informmion Represented by Each
Visual feature

Types of Visual Features

Features Description

1-5 Main component Shape

610 Second component Shape
1112 Relative position
13-15 Relative size
16-20 Third component Shape
21-22 Relative position
23-23 Relative size
26-34 General clutracieristics
3537 Color
38-39 Texture
4044 Absclute size

The possible values for each of these types of information
are encoded as different patterns of activity over the
designated feature groups (see Appendix B)

Much as in the dyslexia simulation, the semantics of
each of the 40 objects is represented in terms of a set of
semantic features (see Appendix B) Twenty-eight of the
86 features represent the abstract visual semantics of the
object The first 14 of these are identical to the general
visuad characteristics, color, and texture encoding used
in the visual (input) representations The next three are
a condensed version of the absolute size encoding, and
the remaining 11 summarize the shape of the object
Following this, there are features for consistency (2),
materiz! of which the the object is made (8), where the
object is found (10}, its general function (10), specific
function (22), and the general actions associated with it
(7) We assume that information about more specific
actions associated with an object would be given a non-
semantic, possibly motoric, representation, in the same
way that the semantic representation of an object con-
tins only very genera visual information

The Network

The architecture of the network we will use to map visual
representations onto semantic ones is derived from the
dyslexia nerworlk, and is shown in Figure 47 It has a
direct pathway from 44 “visual” input units through 40
intermediate units 1o 86 semantic output units, and a
clean-up pathway attached to semantics with 40 addi-
fional units Only a randomly selected 25% of the pos-
sible connections berween two layers are present Unlike
the dyslexia network, the current network has no ditect
connections among semantic units—all  interactions
among these units must take place via the clean-up units
The nerwork has a total of 4492 connections In addition
10 the standard long-term learning weight, each connec-
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( A0 cizan-up units ) C 856 semantic unils )
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43 visual units

Figure 4. The architeciure of the optic aphasia network Notice thunt
the set of connections from the visual (Gnput) units w the intermedi-
ate units is labeled V—1 rather than G-l

tion has a shortterm correlational weight that operates
as described previously

The Training Procedure

The nerwork was trained using backpropagation through
time {see Appendix A} to activate each of the appropriate
semantic units 1o within 0 2 of its correct value over the
last three of eight iterations when presented with the
visual representation of each object At the end of pro-
cessing each obiject, the short-term weights were modi-
fied according to Eq (1) In this way each object was
presented in the context of the outcome of the presen-
tation of the previous object Objects were chosen ran-
domly without replacement for presentation during a
sweep to ensure that they were all presented equally
often and in an unbiased order To solve the task, the
nerwork must derive a set of long-term weights that
enables it 1o recognize each object when preceded by
each other object To the extent that the unit correlations
for one object are unrelated to those for the next, the
shorrterm weights effectively act like noise in the
weights, forcing the network 10 develop stronger seman-
tic attraceors with the long-term learning weights
Although the operation of the nerwork is deterministic,
the random order of object presentations causes perfor-
mance to vary somewhat over successive training sweeps.
However, the network reliably satisfied the waining cri-
teria after about 9000 sweeps through all 40 objects No
attempt was made 1o minimize the training time

The Lesioning Procedure

Afier the nerwork had learned to recognized each object,
we subjected each set of connections to lesions of a wide |
range of severity: 005, 01, 015,02, 025, 03, 04, 05,
and 07 The severity of lesion specifies the proportion
of existing connections that are selected at random and
removed from a given set We followed the dyslexia
simulation in applying two criteria to the generated se-
mantic activity to decide whether the output of the dam-
aged nerwork constituted a response or an omission
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First, a proximiny criterion ensured tha the corrupted
semantics was sufficiently close to the correct semantics
of some object Specificaily, the cosine of the angle (ie,
normalized dot product) berween the semantic vector
produced by the network and the actual semantic vector
of some object (in the 86-dimensional space of semantic
features) had to be greater than 08 Second, a gap cri-
terion ensured that no other object matched nearly as
well Specifically, the proximity to the generated seman-
tics of the best matching object had to be at least 003
larger than the proximity to any other object If either of
these criteria failed, the output was interpreted as an
omission; otherwise the best matching object was taken
as the response, which either could be the correct object
or an error We have not implemented an output system
that would map the semantics of objeces onto their pro-
nunciatons Plaur and Shaltice (1991a) discuss the diffi-
culties in developing such a system, and demonstrate
that criteria and outpur systems produce similar effects
in the domain of word reading In the current simula-
tions we must resort to applving much more computa-
donally demanding criterin  directly o semantics
Specifically, the expected proximity of random vectors
decreases with increasing dimensionality, so these cri-
teria are someswhat more stringent in the current context
{(with 86 semantic lentures) than when applied o the
semantics of words {with 68 features) While this will
lower the overall rate of explicit responses (correct or
error), it should not significantly bias the diswibutions
of error types (see Hinton & Shallice, 1991) We will
explicitly verify this fater

We would like to measure the performance of the
damaged nerwork on each object as stimulus when pre-
ceded by every other object We will refer to the preced-
ing object as the “prime " One possible procedure for
gathering data is to administer a particular lesion, and
then measure performance on all of the objects after
using each of them in turn as the prime (i e, setting the
short-term weights based on the unit correfations when
the prime abject is presented to the damaged network)
However, this procedure has the drawback that the pat-
tern of errors will be quite similar for each different
prime—the tendency for a particular lesion to cause
particular errors may dominate any perseverative effects
The alternative procedure thar we adopt is to administer
a different lesion for each prime object This means that
data is gathered over 800 instances of a particular type
of lesion (40 primes X 20 lesions per prime) rather than
just 20 In this way, the effects due to a particular type of
lesion are better sampled, while stili enabling persever-
ative effects to emerge Although the first procedure is
more analogous to the testing situation for an individual
patient, the latter should produce results that better re-
flect the extent to which lesions to the network in gen-
eral produce the optic aphasic error pattern

Far each lesion, we randomly selected and removed
the appropriate proportion of connections, presented the

prime with the short-tlerm weights set o zero, and set
the short-term weights on the basis of the resulting unit
activities We then presented each object in turn {with
the shori-term weights fixed) The nerwork responded
correctly if the generated semantics satisfied the prox-
imity and gap criteria for the semantics of the presemnted
object Tt made an error if the criteria were met for some
other object, and it produced an omission if the gener-
ared semantics failed either of the criteria

RESULYS

Correct Performance

Figure 5 presents the correct performance of the nerwork
after lesions o each set of connections, as a function
of lesion severity Overall, lesions to the direct path-
way  (visual-to-intermediate, V—1, and intermediate-
to-semcinttic, 1-»5) are more debilitating than lesions
to the clean-up pathway (semantic-to-clecinip, 5—C, and
cleanup-to-semantic, C—3) Compared with the correct
rates for disconnection lesions of the dyslexia network
{see Hinton & shallice, 1991, p 86), the optic aphasia
network is much less sensitive to -8 lesions and much
more sensitive 0 5—C lesions This contrast can be
understood by recognizing that the network finds it quite
difficult 10 correctly recognize objects when the short-
term weights provide a bias toward previous objects It
relies heavily on the clean-up pathway 0 overcome this
bias, and is therefore more sensitive to lesions to this
pathway

Percent Correct
n
i~1

&0

50

40

30

20

() &7 02 0.3 . (13 0.6

4
Lesion Severity

Figure 5. Overall correct performance of the optic aphasia netwark
after tesions to each main set of connections, as & function of lesion
severity
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Error Classification

When the network is incorrect, it either fails to respond
{omission) or produces as a response an object other
than the one presented (error) To classify explicit errors,
we need a defnition of when the stimulus and response
are visually and/or semantically related We could use
category membership for semantic relatedness as Hinton
anc Shallice did, but there is no visual similarity measure
for objects analogous to letter overiap. A more uniform
approach is o use the proximity (ie, normalized dot-
product) of the representations of the stimulus and re-
sponse as a direct measure of their visual and semantic
similarity We can then apply criteria 1o these proximity
values o determine if two objects ave sufficiently similar
10 be related for the purposes of error classification
Accordingly, two objects will be considered visuaily re-
fated if the proximity of their visual representations ex-
ceeds 06, and semantically related if their proximity of
their semantic represemtations exceeds 035 The exact
values of these criteria are somewhat arbitrary because
we will evaluate the proportions of different error types
produced by the nerwork relative to their chance rates
We chose these values so that the chance rates of visual
and semantic relatedness across all possible object pairs
are about equal and near 10% Specifically, these criteria
vield the following chance rates of errors: visual ¢ =
0 0949, semantic § = 00885, mixed visual-and-semantic
m = (0613, and other o = 7551 Notice that s =
(00840 is much less than m If visual and semantic
similarity were unrelated, these two values should be
about equal, as they are for the Hinton and Shallice word
set {Plaut & Shallice, 1991a; 1993)

A more direct test of the relationship betwveen visual
and semantic relatedness is the correlation, over all pairs
of objects, of visual and semantic proximity In fact, there
is a highly significant correlation between visual prox-
imity and semantic proximity for objects [0 52 ignoring
diagonal terms, #(1558) = 237, p < 0001} In contrast,
the correfation for the word set shows a slight negative
grend [—004, (1558) = 156, p = 012} Thus, a major
difference berween our definition of object recognition
as compared with word recognition is that there is sig-
nificant structure in the mapping of visual input to se-
mantics for objects but not for words That is, unlike
words, objects with similar appearances have similar
meanings This will prove important in explaining the
ravity of visual errors in optic aphasic object naming
compared with visual errors in deep dyslexic reading

Horizontal Esrors

We are concerned with two types of effects in the errors
produced by the network under damage, roughly cor-
responding to Lthermitte and Beauvois’ (1973} distinction
berween “horizontal” and “vertical” errors Horizontal
errors refer to the standard relation berween the stimulus
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and response For these we will use the definitions of
visual and semantic relatedness described above, and
classify errors as visual, semantic, mixed visual-and-se-
mantic, and “other” in the same way as Hinton and Shal-
lice (1991} We address vertical (perseverative) errors in
the following section

Figure 6 presents the rates of each type of horizontal
error after lesions resulting in correct performance be-
ween 20 and 809, as well as the distribution of types in
pairs of different stimuli and responses chosen randomly
from the set of objects The ol error rates are fairly
low, ranging from 3 1% for v—1 lesions to 0 1% for C—5
lesions The very low rates of explicit etrors after clean-
up lesions indicate that relatively intact attractors are
necessary 1o clean-up the corrupted semantics into those
of a related object—svith damaged attractoss the network
either names the object correctly {as was shown in Fig
5} or simply fails to respond Considering the distribu-
tion of error types, first notice that proportions of “other”
errors—responses unrelued to the stmulus—are very
low relative 1o their chance proportion Visual and se-
mantic similarity have a strong influence on the behavior
of the damaged nerwork The clearest effect of this is a
strong bias toward mixed visuai-and-semantic errors Al-
though their chance rate is only about 6%, they constinute
over 68% of the errors produced by the networl There
ts also a strong bias toward semantic errors as compared
to visual errors Overall, the ratio of semantic errors to
visual errors is 57 times the chance ratio This ratio
increases as the location of damage moves closer 1o
semantics For V-1 the ratio is 45 umes the chance
value, while lesions to the clean-up pathway (5—C and
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Figure 6. The distribation of error types for fesions to the optic
aphasia network producing correct performance berween 20 and
80%, us well as the distribution of rypes for error responses chosen
rancomiy from the set of objects
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C—35) produce virtually no visual errors In fact, almost
92% of the errors produced by the network are seman-
tically refated to the stimulus, compared with 2 chance
vilue of 15%

Why, then, does the network show such a strong bias
toward semangic and mixed visual-and-semantic errors
relative 1o visual errors? Another way to phrase this ques-
tion is, why is the bias toward semantic vs visual simi-
larity in errors so much stronger in the optic aphasia
network than in the dyslexia nerwork? In the dyslexia
simulations, the ratio of visual errors to semantic errors
is roughly equal to that of their chance rates (see, eg,
Plaue & Shallice, 1991a, p 82) It is unlikely that the
difference relaes directly 1o the presence of shortterm
weights in the optic aphasia nerwork A biss in errors
toward the previous object would match the chance dis-
tribution of error types, since ali combinations of primes
and stimuli were tested Rather, it is more likely to relate
to a difference in the nature of the tasks of object rec-
ognition and word recognition Earlier we argued that
the relationship between visual and semantic represen-
tations is more structured for objects than it is for words,
both in general and in how we have defined the tasks
That is, two objects with similar visual forms are more
likely to have similar meanings and functions than are
words that share letters In a sense this follows the dis-
tinction made by Gibson (1979} thar shapes have partic-

ukar “affordances"—they allow for cerin types of

manipulations  and  actions  independent of specific
knowledge of their identity (see also Riddoch & Hum-
phreys, 1987)

We explain word reading errors in deep dyslexia, and
object naming errors in optic aphasia, in terms of the
same computational principles: damage to an auractor
network causes the initial pawern of activity generated
by a stimulus to be “captured” by the auractor for a
related stimulus {see Fig 3) In mapping orthography to
semantics, there is strong pressure to position and shape
the attractors $o as to separate the initial semantic activity
for visually similar stimuli into their quite distinct, final
semantics In fact, for many words (eg, BuG), visual
similarity svith words in other categories (e g, MUG, BOG)
is often much greater than with any of the words in the
same category (e g, poG, rG) Because visually similar
words tend to produce similar initial patterns of semantic
activity, the nerwark must learn to position their attractor
basins to pull apart these similar patterns into quite
different final patterns As a result, there are large areas
within semantic space where the atractor basins for
purely visually related words adioin, providing ample
opportunity for visual errors (see also the analysis in
Appendix A of Hinton & Shallice, 1991) In contrast, as
discussed above, in object naming it is less common that
visually similar objects need to be separated into com-
pletely different semantics In addirion, even for visually
similar, semantically distinet pairs of objects (eg, fork
and cuel ), there are wplcally other objects within each

category that are just as visually similar (e g, spoon and
netf, respectively) When the initdal semantics for fork is
corrupted by damage, the additional bias of semantic
similarity makes the mixed error fork — “spoon” much
more likely than the visual error fork — “awl" Thus,
potential visual errors are often preempted by semantic
o1 mixed visual-and-semantic errors

In fact, the optic aphasia network is more likely 10
produce semantic errors relative to visual errors than
are the deep dyslexia nerworks, even when the chance
possibilities for visual and semantic errors are made
approximately equal (compate, for instance, Fig 6 with
Fig 56 of Plaur & Shallice, 1991a) This seems likely to
be due to another difference berween the nerworks The
optic aphasia network has w0 constantly overcome the
diseurbing influence of the perseverative effecis of the
preceding stimulus This requires it to build more pow-
erful atractors Since stronger attractors produce more
accurate semantic representations, putative errors are
more likely to satisfy the gap criterion Semantic errors
are particularly sensitive to the gap criterion because
they differ from semaantically related ajternatives (includ-
ing the correct response) on only a few features Thus,
by helping to satisfy the gap criterion, stronger attractors
tend 10 increase the rate of semantic errors relative 1o
visual errors |

For these two reasons, then, the optic aphasia network
is much more prone to produce semantic errors com-
pared with visual errors than are the deep dyslexia net-
works This difference corresponds o that obtained
between the two neurologically based error patterns that
are being considered

Vertical Errors

One of the more interesting aspects of the naming errors
of optic aphasics is that they are biased by the responses
given to previously presented objects These persevera-
tive errors, termed “vertical” by Lhermitte and Beauvois
(1973), are most frequently identical 1o previous re-
sponses, but can also be semantically related Mixed vis-
ual-and-semantic perseverative errors occur as well, but-,
purely visual perseverations have not been documented.
In the preceding section we analyzed error responses

based only on the relationship between stimulus and

response—so-called “horizontal” errors Classifying ver-
tical errors is more complicated as they involve the re-

lationship of both the stimulus and response with .

previous objects. For simplicity we will confine ourselves,
to considering the effects of only the immediately pre--
ceding object, which we call the “prime.” This simplifi-
cation also applies to most of the errors produced by
patients We will also consider only semantic relatedness
between the prime and the stimulus and/or response, as
the rate of purely visual relatedness is so low. Finally, if
the damaged network misnames the previous object, we
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will considler the nanied object 10 be the “prime” for the
purposes of comparison with the simulus and response
Table 5 presents the possible relationships berween
stimulus, 1esponse, and prime, and their classification
into error types Each ype is Jabeled in two parts The
first part (before the “+7) refers to the nature of the
stimulus-response (horizongal) error:

§  stmulus and response We semantically related (in-
cludes semantic and mixed visual-and-semantic
errors)

O Stimulus and response are not semantically refated
{includes visual and “other” errors)

The second part of the labe! refers to the nature of the
(vertical) perseveration, depending on the relationship
between the prime and the stimulus and/or response:

P The response is identical to the prime {("persevera:
tion")

The sdmulus is identical w the prime but the re-
sponse is not In this case the prime-response re-
lationship is conrary to an item perseveration

¢ The response is semantically relared (“coordinate”)
but not identical to the prime

The stimulus is semantically related to the prime but
the response i not Thus, the response goes
against 4 semantic perseveration

U The response and prime are unrefated

!

gl

The easiest way @ understand these types s in erms of
e different influences that contribute 1o the error An
§+U error leg (“spoon’) dest — “chair’'l is a standard
semantic error with no perseverative influence, while an
O+ error leg ("spoon”) desk — “spoon”] s A repeated
response untelated to the stimulus In an $+C error leg
(“spoon’”) fork — “knife”], both horizonal (stimulus—
response ) and vertical (pr'sme—-r-esponse} semantic simi-
larity contribute 1© the error. In an error involving the
perseverative relation P or C eg {“spoon”) spoon —>

I

“desk™}, the stimulus is consistent with the perseverative
effect but the response 18 not—thus the error is conuary
(¢ the perseverative influence

As mentioned in the Introduction {see Table 2), of the
types of errors of JF described by Lhermitte and Beauvois
(1973), most are fiorizontal semantic errors (S+1) but
hothh O+P, $+P, and $+C occurred reasonably often as
well

Figure 7 shows the distribution of these perseverative
error ypes produced by lesions t© the optic aphasid
newwork, averaged over all lesion locations and severities
producing correct performance between 20 and 80%
The figure also shows the rates of each error ype that
would be expected if the preceding object had had no
influence on errors The predominance of horizontal
semantic errors is clear in the figure However, since ouy
current concern is with perseverative influences, we will
first consider the remaining (*O") errors These errors
provide the clearest picture of perseverative influences
because there is no confounding bias from semantic
relatedness of the stimulus and response

pure perseverations (O+P), in which the previous re-
sponse s repeated even though it bears no relation 0
either the current stimuius Of response, make up 3 73%
of the network's ertors The overall proportion of error
responses that are not semantically refated to the stim-
ulus is 826% If there were no perseverative influence
on errors, only 1in 40 of these responses would be iden-
tical to the prime, and s0 only 021% of all errors would
be O+ P by chance Thus, the ahserved rate of response
perseverations is about 18 times the chance rate Another
indication of the strong perseverative influence is that it
s extremely rare (002% of errors) for the prime itsetf
1o produce an unrelared response when presented as
the simulus (O+P), even though this type of error is
just as likely by chance as O+P Thus, the prime is
exerting a strong bias on the nature of the response
independent of any relationship with the stimulus

Iable 5. The Passible Types of Frrors Based on Semantic Relatedness berween Stimulus, Response, and Prime
) P

Relationsbip Excunple
Type Stimuilrs—-Resporise Prime-Stinudis Prime—Response Prinme Stimulis — Response
S+¢ Semantic Identical “spoon’ fork — “spaon”
S+P Semantic tdentical Semantic “Spoon’ spoon — “fork”
§+C Semantic Semantic “spoor” fork — “knife”
S5+ Semantic None “spoon’ dlesh — “chair
O+FP Nong Identical “Spoor clesk — "spuon"m
QO+ None Identical None "spoorn spoon —» “desk
Oo+C None Semantic “spoon desk — “fork”
0+C None Semantic None 0001 fork — “desk
O+U None None “spoon” cleske — “nadl”
100  Jownal of Cognitive Neurosclence Volume 5, Nionber 1
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The nervork also produces some semantic persever-
ations (Q+C), in which, rather dwn the prime itself, an
object that is semantically relaed o prime is given
as a response unrelated o the stimulus {eg (“spoon™)
desk — “fork”; 2775% of errors] In contrast, the nerwork
is much less likely to produce an unrelated response
when the stimridus is semantically related to the prime
[O+C, eg (“spoon”) fork ~» “desk”, 0249% of errors]
Both these errors and completely unrelated errors
(O-+U) occur ai rates far below chance Thus, the prime
biases the network toward responses that are semanti-
cally related 1o ft—this increases O+C errors and de-
creases O+C and O+U errors

A similar patern of results holds among errors in
which the stimuius and response are semantically re-
lated  Among these, by far the most common is the
conventional horizontal semantic error with no persev-
erative relationship (5+U; 316% of errors), although
these fall well below their chance rate. Among the errors
for which there is a perseverative influence, the most
commen are response  perseverations [S+P, eg
("spoon”) fork ~ “spoon”; 24 8% of errors], occurring
about 10 times above the chance rate Semantic perseyv-
erations (5+C) are somewhat less common (15.0%) and
are only slightly above the chance rate Thus, the prime
induces a strong bias toward an identical response to the
next object rather than simply one in the same category.
Also notice that it is very rare (638%) for the prime to

produce another object in the category rather than itself
(§+P) when presented as the stimulus Thus, even within
a category, the prime biases responses woward itself com-
pared with other objects in the category. This bias toward
S+P errors is also seen in the error responses of JF

Effects of Type of Response to the Preceding
Object

For the purposes of categorizing perseverative errors,
we have define the “prime” 1o be the response given o
the preceding object (correct or an error), or the object
whose semantics are nearest those generated by the ner-
work in the case where presentation of the preceding
object resulted in an omission While we have grouped
these conditions together in the analysis presented
above, it would seem likely that the influence that the
prime has on the naming of subsequent objects would
vary considerably with how well the network responded
to the prime itself To investigate this possibility, we
separated errors based on how the damaged network
responded o the prime

Figure 8 presents the same data on the distributions
of perseverative error types, now separated by whether
the nerwork named the preceding object correctly, made
an error, or failed to respond Consider the balance of
responses that are identical to the prime (P) vs those
that are unrelated (U), both for semantic errors {S) and
other errors (O) This provides a rough measure of the
“strength” of perseverative influences First notice that
the proportions of all errors that are response persev-
erations (S+P and O-+P) are much lower when the
prime is an omission than when it is an explicit response
Conversely, when the prime produces no response as a
stimulus, the proportion of etrors showing no persev-
erative influence (S+U and O+ U} are much higher and
close to their chance proportions (relative to S and O
responses, respectively} In fact, the proportion of all
error responses that are identical 1o the prime is 50 3%
for primes producing explicit response vs. only 3 1% for
primes producing omissions Thus, when an object gen-
erdtles no response, it also has far less influence on the
naming of subsequent objects than when it generates a
correct or error response This makes sense given that
omissions occur when the semantics generated by the
network do not match the nearest object very well When
the short-term weights are set on the basis of poorer
semantics, they provide a weaker bias toward the prime
than when set by more accurate semantics For this rea-
son, the combined data reported in Figure 7 significantly
underestimate the perseverative influence from previous
objects that evoke an explicit response

Even among explicit responses, there are some inter-
esting differences between correctly vs  incorrectly
named primes When the preceding object is named
correctly, the proportion of errors involving a response
perseveration is about equal to that involving no persev-
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erative relation In contrast, when the preceding object
is named incorrectly, the next object is much more likely
1o elicit the same response The proportion of errors
that are response perseverations is 481% for primes
producing errots vs 34 4% for primes named correctly
In essence, the airactor for the incorrect 1es5ponse has
become abnormally strong as a result of damage, pro-
clucing the error to the preceding object When the short-
term weights are set on the basis of this object’s seman-
tics, there is even stronger pressure for other abjects to
succumb to the same amuractor

The perseverative responses of optic aphasics can
come from correctly named objects, incorrectly named
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objects, and have even been reported on objects gener-
ating no response (Gil et ai, 1985; Lhermite & Beauvols,
1973} The proportions of error fypes that follow each
of these conditions has not been analyzed in detail, 50 it
is difficult 1o compare the network’s behavior with that
of patients in mose than a qualitative manner However,
quite 2 common effect clinically is a chain of semantically
related responses, which could be explained by the ex-
istence of an abnormally deep autracior

Effects of Lesion Location

The data from different lesion locations are averaged
together in the results presented above However, the
distribution of perseverative error types differs signifi-
cantly as a function of the location of damage in the
nerwork Figure 9 presents the distributions of these
error types separately for each lesion location The pat-
rern for V—1 lesions is most similar to that for the entire
network because the largest proportion of errors (73 2%)
occur after these lesions There is an interesting pro-
gression in the error pattern as the lesion lpcation moves
closer 1o semantics For V-1 lesions, most semantic er-
rors show no perseverative relationship, white other er-
rors are about balanced between O+P and O+t For
these lesions, the proportion of error responses that are
identical to the prime is 277% 1—8 lesions show a
slightly higher proportion of perseverative (esponses
(302%) Clean-up lesions produce virtually no non-
semantic errors, and those that occur are either item or
semantic perseverations with the prime Qverali, com-
pared with lesion to the direct pathway, clean-up lesions
produce a higher proportion of perseverations (333%
afier C->$ lesions and 42 3% after S—C lesions) Thus,
the strength of the perseverative influence increases as
lesions move closer to semantics However, the propor-
tion of semantic perseverations (S+C and O+C} is some-
what less affected by lesion location

Why should lesions near or within semantics produce
a stronger bias toward response perseverations than ie-
sions closer to the input? Clean-up lesions corrupt the
semantic attractors for objects, resulting in far fewer
overall naming errors than do lesions to the direct path-
way (see Fig 6). After clean-up lesions, the prime is
named correctly on 71 8% of the trials 3 When this occurs,
the short-term weights within the clean-up pathway are
set in a way that magnifies the clean-up influences that
generated the semantics of that particular obyject This
additional bias has more influence after clean-up lesions
compared with direct-pathway lesions because the nor-
mal clean-up influences are diminished after the former
but not the latter The bias toward the semantics of the
preceding object can dominate the weakened clean-up
for the correct semantics of the stimulus, causing the
nerwork to more frequently produce a response persev-
eration Even when the semantics generated by the net-
work in response to the preceding object do not satisfy
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the response criteria, they still evoke short-term weights
that bias the network on the next tial toward the se-
mantics of that object as compared with others

Effects of Severity of the Impairment

All of the results we have presented thus far have been
averaged across lesions producing overall correct per-
formance berween 20 and 80%. Our motivation for con-
sidering only this range of performance is that quite mild
or severe impairments often produce an atypical distri-
bution of error types (see Plaur & Shallice, 1991a} Also,
the levels of correct performance of most of the patients
we are considering Bl into this range However, since
patients vary significantly in their overall levels of per-
formance, it is important to know how the behavior of
the network varies over a range of severities of impair-
ment as well

There are two general trends in the distribution of
errors as performance deteriorates with increasing lesion
severity First, the proportion of error responses thar are
unrelated to the stimulus gradually increases Only 2 7%
of adl errors are unrelated when correct performance is

above 80%, while over 22 2% are unrelated when pei-
formance is below 20% Second, as performance dete-
tiorates, the proportion of errors that are response
perseverations gradually decreases S+P and O+P errors
account for 47.3% of all errors when correct perfor-
mance is above 80%, but only 20 9% when performance
is below 20% Thus, as the severity of the impairment
increases, both the stimulus and the preceding object
have diminished influence on the responses generated
by the network Conversely, networks with only slight
impairments are particularly prone o producing re-
sponses that are related to both the stimubus and prime-
—585% of all errors are either S+PF or $+C when cor-
rect performance is above 80%

Effects of Response Criteria

To verify that our results do not depend on the particular
values of the response criteria used, we reevaluated the
behavior of the nerwvork under the identical set of le-
sions, using less stringent criteria for explicic responses
Specifically, we decreased the proximity criterion from
0.8 10 075, and decreased the gap criterion from 0 05 to
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0025 These relaxed criteria increase the overall pro-
portion of word presentations producing explicit re-

sponses from 51 2 1o 61 1% Although both the raes of

correct and error responses increase, errors account for
a higher proportion of explicit responses when the cri-
teria are more lenient (68 vs. 37%)

1f we consicer lesions producing correct performance
betwveen 20 and 80%, the network produces a much
higher overall error rate when using less stringent cri-
reria (40 vs 13%) However, the distribution of error
types is quite similar The network continues to show a
strong bias towards mixed visual-and-semantic errors
(59 4% of ail errors) and many more semantic than visual
errors, with the ratio being four tmes the chance ratio
These numbers are somewhat lower than those for the
original criteria (68 2% and 51) because the less strin-
gent criteria produce a higher proportion of “ather”
errors (89 vs 3 6% of all errors, respectively)

The basic perseverative effects also remain when using
relaxed response criteria The rates of §+Pp, 5+C, O+P,
and O-+C errors are all still well above the rates expected
if the prime had no effect on the response, while S+P,
0+C, and O+P errors occur at rates well below their
expected chance tates Overall, 195% of all errors are
item perseverations when using the less stringent crite-
ria, compared with 285% with the original criteria In
fact, completely unrelated errors are more common with
less seringent criteria (66 vs 27% of all errors) Thus,
while less stringent criteria allow poorer semantic activity
patterns to qualify as responses, thereby reducing the
overall influence of the stimulus and prime on the re-
sponse in the averaged data, the same pattern of hori-
zontal and vertical effects in errors is present

DISCUSSION

The current simulation demonstrates that the computa-
tional approach used in our earfier work on deep clys-
lexia can be extended to the analysis of the error pattern
of optic aphasia In particular, given our earlier work,
one could expect that the errors that occur when the
optic aphasia network is lesioned would reflect the sim-
ilarity metrics of the input and the output representa-
tions, both separately (i e, in semantic erross and visual
errors) and together (in mixed visual-and-semantic er-
rors) And in fact, semantic errors and visund errors occur
at well above chance levels, and mixed visual-and-se-
mantic errors occur even more frequently

in both the dyslexia and optic aphasia simulations, a
small set of general connectionist principles—relating to
distributed representations, gradient descent learning,
and atractors—is sufficient to account for complex em-
pirical phenomena concerning impaired visual compre-
hension This strongly suggests that these principles shed
light on the nature of the computations underlying the
semantic processing of visual information

The major extension in the present simulations is the
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incorporation of short-term correlational weights In ad-
dition to having other interesting computational and em-
pirical consequences, these weights bias the network
toward reproducing patterns of acrivity that have oc-
curred on recently preceding trials As a resuly, the effects
of lesions to the nerwvork have an additional dimension
Responses that have occurred on the preceding trial now
occur as ertors at well above chance rates, especially
when the stimulus is semantically refated to the preced-
ing response In addition, less frequently but still above
chance, a coordinaie of the preceding item occurs as an
error response 1f one considers the optic aphasic error
pattern described in the Introduction, both of these types
of error have been extensively documented They cor-
respond to the two types of “vertical” error discussed by
Lhermitte and Beauvois (1973) Frequent semantic errors
are also a standard part of the optic aphasic error patern,
and a high frequency of mixed errors have been noted
by Riddoch and Humphreys (1987) in their patient JB
They also noted that the patient had particuiar difficulty
in discrimination between objects that were both visually
and semantically simifar, which they also interpret in
terms of cascaded processes

Three main empirical issues remain with respect 10
the syndrome: whether the simulation reproduces all
aspects of the error pattern, how the two exceptional
patients referred to in the Introduction can be explained,
and what account can be given of other aspects of the
syndrome. However, before turning to these questions,
it is important 1o clatify how the nerwork architecture
and lesioning procedure relate to the underlying neu-
roanatomy of object recognition and the typical neuro-
pathology in optic aphasia

Relation to Neuroanatomy and
Neuropathology

The main emphasis of our work is to elucidate the gen-
eral compurational principles that undetlie the ability of
damaged connectionist networks to reproduce neuro-
psychological phenomena However, for the behavior of
a damaged network to be relevant to the behavior of
neurological patients, there must be some relationship
berween the structures that are damaged in the network
and the brain structures that are damaged in the patients

The general question of the relation between various
types of connectionist networks on the one hand, and
various aspects of neurobiology on the other, is far be-
yond the scope of this paper (for discussion, see eg,
Aliport, 1985; Churchland & Sejnowski, 1988; Crick, 1989;_
Crick & Asanuma, 1986, Nadel, Cooper, Culicover, &
Harnish, 1989; Smolensky, 1986, 1988). Nonetheless, we
can make some tentative suggestions as (o how groups

of units in the current network might relate 1o neuro-
anatomy.

The visual input units in our network represent high-
Jevel visual information in the form of structural descrip-
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tions of objects Substantial neurophysiological and neu-
roanatomical evidence, from both human and animal
work, suggests that the highest-level presemantic visual
representations are found in inferior temporal cortex
(see Plaut & Farah, 1990, for a review) Based on an
extensive review of reported cases of associative agnosia,
Farah (1990, 1991) proposes bilateral involvement in
humans, with each hemisphere specializing in differem
wpes of information However, Warrington and Taylor
(1973, 1978) consicder right hemisphere systems 10 be
particularly important, a least for complex stimuli

Not surprisingly, localizing semantics is more prob-
lematic Of course, one possibility (see e g, Allport, 1983)
is that semantics cannot be localized © any partcular

brain focation, but is distributed across a number of

costicat areas that are specialized for different modalities
10 different extents In fact, most generalized dementias,
such as Alzheimer's disease, involve diffuse cortical dam-
age (for an overview, see Heilman & Valenstein, 1985}
However there is increasing evidence that left temporal
structures are particuluely important for semantic pro-
cessing A series of patents with unilateral left hemi-
sphere lesions were given a set of verbal tests by
Coughlan and Warrington (1978) The three tests that
had tow semantic loading were performed roughly
equally well by patients whose lesions involved the tem-
poral lobe and by those whose lesions spared the tem-
poral lobe However the four tests that had a strong
semantic component were performed significantly worse
by the temporal group More recenty, there have been
4 series of studies of individual progressive aphasic pa-
dents using €1, MRE and PET Where the language prob-
lem was well restricted 10 semantic processing, focal
airophy of the left temporal lobe has been the standard
finding (e g, Poeck & Luzzatti, 1988, cases 2 and 3; Tvr-
rell, Warrington, Frackowiak, & Rossar, 1990, cases 2 and
3; Hodges, Paterson, Oxbury, & Funneli, 1992)

The one finding which appears discrepan: with 2 key
role for the left temporal lobe in semantic processing is
the suggestion from work using PET imaging that se-
mantic processing involves the left dorsolateral prefron-
wl cortex (Petersen, Fox, Mintun, & Raichle, 1988)
However, the sk emploved required subjects to gen-
erate a use for a noun (e g, cake — “ear’) Frith, Friston,
Liddle, and Frackowaik (1991) found that generation
msks that lack a semantic component also involve the
same part of the fromal lobe They argue that it is this
component of the wsk used by Petersen and colleagues,
and not the semantic aspect, that leads 1o teft dorsolateral
frontal activation This cermainly fits with the classical
neuropsychological view of word fluency tasks (see Mil-
ner, 1964)

One of the main strengths of connectionist neuro-
psychology is that brain lesions have a nawral, fairly
atheorezical interpretation in terms of removal of units
and/or connections (but see Small, 1991, for alternative
interpretations) Thus, to the extent that we can associate

groups of units in the model with brain areas, we would
interpret lesions to the model as corresponding to partial
or complete lesions of the corresponding brain struc-
tures On this basis, our simulation of the optic aphasic
errar pattern after lesions that impair semantic process-
ing of visual information fis well with the neurological
evidence that most known optic aphasic patients have
unilateral left posterior damage, and that this region is
pardeularly important for semantic processing

With this relationship berween nerwork structure and
brain structure in mind, we reiurn to considering the
extent 1o which the simulation reproduces all aspects of
the optic aphasia error pagern. To this end, it is useful
10 compare optic aphasia and deep dyslexia, and their
simulations, with respect 1o the relationships berween
their respective input and output represeniaions

A Comparison of Optic Aphasia and Deep
Dysiexia

The two main differences in the pattern of performance
of deep dyslexics and optic aphasics that ate relevant
relate to the relative frequency of purely visual errors
and perseverations Errors that are visually but not se-
maatically related can constitute a fairly high proportion
of all errors in some deep dvslexics (eg, 51% for PS,
Shallice & Coughlan, 1980) and ver are quite rare in
optic aphasics (Riddoch & Humplweys, 1987; Gil et ai,
1983; Lhermitte & Beauvois, 1973) One possible contri-
bution to this difference is that the definition of visual
similarity may be more stringent for objects than for
words However, with presumably the same criteria for
visual similarity, some other visual agnosics make a high
propottion of visual etrars in naming objects (eg, 46%
for FZ; Levine, 1978; also see Larrabee, Levin, Huff, Kay,
& Guinto, 1985) Thus, the rarity of visual errors by optic
aphasics cannot be completely expiained by a criterion
difference Our explanation is that the relative difference
in visual errors in reading vs object naming is due w0
the different amount of structure in the two tasks and
the different overall strength of the awractors As dem-
onstrated in the simulations, the greater similariey be-
rween the visual and semantic representations of objects
dimninishes the influence of purely visual similarity on
the layout of attractor basins within semantics, as re-
flected in the pattern of errors produced under damage
The stronger attractors at the semantic level also lead w
a greater increase in semantic erross

Is it legitimate to assume there is greater structure in
the relationships berween the visual and semantic rep-
resentazions of objects compared with words? In our
dyslexia simuiations we have assumed that the mapping
from orthography to semantics is completely unstruc-
tured, which is only approximately true However, many
aspects of the visual representation of an ¢bject are se-
mantically relevant as well Swrong similarity of visual
form is a characteristic of many serantic categories, par-
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ticularly biological ones Even members of functionally
defined categories often share visual characteristics be-
cause similar shapes are appropriate for similar actions
(eg, elongated shapes for pounding, horizontal shapes
for siting/lying, Gibson, 1979} Moreover, size is cleatly
semantically relevant as are many of the general visual
characteristics we used Thus, the assumption that object
naming is more structured than word naming seems
justified (also see Bobick, 1987 Richards, 1988, for dis-
cussion}

The second main difference between reading in deep
dyslexia and object naming in optic aphasia relates w
perseveration Although perseveration is common after
many types of language-related impairments {Albert &
Sandson, 1986), it is not particularly prevalent in the
reading errors of deep dyslexics In contrast, a relatively
high proportion of the naming errors of optic aphasics
are related 1o previously presented objects (e g, 28% for
JF, Lhermite & Beauvois, 1973} We introduced short-
term correlational weights to provide a means by which
object naming could be influenced by the responses
given 1o previous objects While some amount of inde-
pendent fustification can be given for such weights, we
were motivated to include them in the current simula-
tions directly by the observation of perseverative effects
in patients, and so they must be viewed as somewhat ad
hoc However, the fact that they lead to interesting inter-
actions with other aspects of the operation of the net-
work, such as semantic influences in errors, suggests that
their introduction contributes in a significant way o un-
derstanding the nawre of perseverative influences in
optic aphasia The simulation demonstrates that these
two differences can account for the relative rarity of
purely visuad errots in optic aphasia Thus, the whole
error pattern can be explained on the present approach

However, a question remains: if there i incdependent
mativation for including shortterm weights in mapping
between visual and semantic represeniations in object
naming, why did we not include them in networks for
mapping orthography to semantics in reading? The sim-
ple answer is that the behavior of the patients with im-
pairments in this mapping is heuer explained without
them However, this answer is unsatisfying without an
independent explanation for why a temporary bias to-
ward previous patterns of activity is computationally ap-
propriate in object recognition but not reading One
possible explanation is that, unlike in object recognition,
in reading for meaning there is great pressure to rec-
ognize successive words as quickly as possible As long
as the meaning of each individual word is unrelated o
the next, any bias toward the semiantics of previous words
would induce a kind of “sluggishness” that would impede
the nerwork in deriving the correct semuantics of the
current word More generally, short-term weights are not
appropriate in a network for a task in which the speed
of separate successive interpretations is critical However,
the infinite generative capacity of language has no equiv-
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alence in object identification Successively recognized
objects—those found together—will tend more w0 be
related than successive words, 5o a temporary bias in
ohject recognition would be beneficial In addition, the
use of shortterm interactions for feature binding and
segmentation is more critical for natural objects than for
words Finally, the pace at which dyslexics are tested is
far slower than the normal rate of word recognition,
while object recognition is tested at far closer to its
“natural” rate

Individual Cases

As mentioned in the Inwoduction, there are at least tvo
patients who, in terms of their overall patern of perfor-
mance, would be classified as optic aphasics or associa-
tive agnosics, and yet whose performance presents
problems for the current account These are the optic
aphasic patient studied by Coslett and Saffran {1989) and
the associative agnosic patient, FRA, studied by McCarthy
and Warrington (1986)

Coslett and Saffran’s patient was virtually entirely un-
able to name objects, and most of his errors (39/49) bore
no semantic or visual relation 1o the stimulus {e g, scis-
sors — “clocks”; volcano — “pillar”) Seven responses
were semantic errors, Iwo were perseverations, and one
was 2 visual error Thus, on the model, he would clearly
need to have a severe lesion Yet on a number of object
comprehension  tests-—categorization  tasks, functiona
similarity judgments, and semantic association judg-
ments—he performed well

However, if one examines the patients performance
in more detail, the contrast between spared nonverbal
performance and abolished naming performance be-
comes less striking First, it should be noted that the
patient was far from perfect (50% correct) at gesturing
appropriately to objects, and the apparent superiority
over naming does not necessarily conflict with the
model, as we will see in a moment Second, as previous%y
mentioned, in our simulation the proportion of error
responses unrelated to the stimulus increases with lesion
severity (see also Hinton & Shallice, 1989, Plaut & Shal-
lice, 1991a) For example, V—1(05) lesions, which re-
duce correct performance 1 6.5%, produce over three
rimes more errors that are completely unrelated to the
stimulus and prime than do lesions producing correct
performance between 20 and 80% ¢ Of the remaining
errors, 89% are semantically related to the stimulus and
45% are pure perseverations (O+P) Yet even when an
object is not named correctly, on average the generated
semantics is closer to the correct semantics than to those”
of a randomly chosen unrelated object 89% of the time
Thus, the residual semantic activity in the damaged net-
work could support quite reasonable performance on
nonverbal tests of comprehension even when overt nam-
ing is virtually abolished, similar to Coslen and Saffran’s
patient
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The second patient, FRA of McCarthy and Warrington
(1986), presents a different problem Not oaly was FRA
unable to name objects reliably, he also had some diffi-
culty with tasks requiring nonverbal accessing of seman-
tic representations For example, he made many errors
at matching two examples of the same object that were
very visually different (e g, two types of razor) Yet tasks
that stressed the structural description level were per-
formed well Thus, his deficie would appear to be within
the domain of the model. Yet his explicit errors in one
experiment are described as “semantic approximations”
with "no evidence of perseverative responding”

Clearly since FRA was 50% correct at naming pictures,
his deficit is not as severe as that of Coslett and Saffran's
patient It is puzzling that his performance on nonverbal
semantic judgment tasks should be the worse, particu-
larly on category judgment tasks that both patients car-
ried out (ajthough in different forms) Moreover, FRA's
patern of errors was different from that typical of the
syndrome He made either omissions or superordinate
semantic errors One possibility is that FRA'S fesion lay
in the semantic system itself, as McCarthy and Warrington
(1986) argue It is not possible 1o assess the effect of
such a location of lesion properly on the present model
because inmct semantic units are required for the cal-
culation of the proximity and gap measures However,
the effect would presumably be similar o S—C lesions
(see Plaut & Shallice, 1993) As these lesions give low
absolute rates of explicit errors, and almost 98% of these
have a semantic component, the absolute rate of non-
semantic errors would be swamped by semantically re-
lited ones in addition, accessing an incomplete semantic
representation would presumably lead o many super-
ordinate semantic errors

However, as FRA performed normally on naming from
auditory description, such an account would seem to
entail acceptance of some amount of specialization
within semantics (see Beauvois, 1982; Shallice, 1987,
1992, Warrington & Shailice, 1984; but also Caramazza et
al, 1990, Riddoch et al, 1988, for criticisms) In address-
ing these wider issues it is useful to consider other
aspects of the optic aphasia syndrome

The Qverall Pattern of Performance

A major issue remains to be addiessed, regarding the
relationship between the current simulation and the pre-
served abilities of optic aphasics The impaired visual
object naming of optic aphasics is perplexing because
their visual recognition of objects, as indicated by ges-
turing or categorization iasks, as well as their naming of
objects presented in other modalities, appears relatively
intact

The current simulation reproduces the error pattern
of optic aphasics in visual objec: naming by introducing
an impairment in deriving semantics from visual input
In this sense it follows Riddoch and Humphreys' (1987)

claim that optic aphasia is more appropriately considered
4 “semantic access agnosia” However, the current re-
search simulates neither intact visual recognition nor
intact nonvisual naming in the context of impaired visual
naming In what sense then is it a simulation of optic
aphasia? The honest answer is thae it is not one—it is
only a simulation of the error pattern of optic aphasics
However, such a simulation is interesting only as an
explanation of patient behavior if it can plausibly be
extended to incorporate the remaining characteristics of
the syndrome

In aempting to reconcile the current simulations with
the preserved abilities of optic aphasics, we must reem-
phasize that the visual recognition capabilities of optic
aphasics may not be as intact as generally thought The
claims of intact recognition in optic aphasia have been
based almost entirely on their performance in tasks in-
volving either gesturing or semantic categorization Re-
garding categorization, in our discussion of Coslew and
Saffran’s (1989) patient we provided evidence that non-
verbal tests of comprehension could be performed quite
accurately by the damaged netwotk even when explicit
naming is severely impaired (see also Hinton & Shallice,
1991} We approximated these tests by applying a less
stringent “best-match”™ criterion to semantics, so our ex-
planation assumes thae the categorization tasks at which
optic aphasics succeed require fess precise semantics
than naming Riddoch and Humphreys provide some
evidence for this by showing that their patient JB was
significantly impaired at a categorization task that re-
quired distinctions within a category (as naming must)

Turning to gesturing tasks, in fact adequate gesturing
1o misnamed objects has been demonstrated in only
three cases (Gil et al, 1985; Lhermiue & Beauvois, 1973;
Riddoch & Humphreys, 1987)—in two others (Coslen &
Saffran, 1989; Larrabee et al, 1985) gestures incorrectly
corresponded to the named object, and in an additional
two cases (Assal & Regli, 1980; Pefia-Casanova & Roig-
Rovira, 1983), gesturing and naming visual stimuli were
equally impaired To explain relatively preserved gestur-
ing, Riddoch and Humphreys (1987) point our that ges-
turing is often judged less swringently than naming, and
rypically requires less precise semantics Their patien: JB
was 75% correct at gesturing but only 45.3% correct at
naming in a task in which objects were selected 1o have
fully discriminable gestures. Thus, gesturing shows some
impairment, but is still better than naming

However, the same argument &5 unlikely o account
for the relatively preserved gesturing of some optic
aphasics. Lhermitte and Beauvois’ (1973} patient JF never
made an incorrect gesture to a set of 100 pictures of
objects of which 31 were misnamed If gesturing were
based entirely on the same impaired semantics that un-
derlies poor naming, occasional gesturing errors would
be predicted Riddoch and Humphreys (1987) propose
that correct gesturing may often be based directly on the
(nonsemantic) structural description derived by vision
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However, as Farah (1990) points out, often quite different
gesiures are appropriae for visually similar objects (¢g,
a sewing needle and a toothpiclz), making it unlikely that
visual representations alone can suppott gesturing

A possible resolution is 1 suggest that gesturing in
optic aphasics may be hased on a combination of intact
visual steuctural descriptions and resiclital semantics The
residual semantics could narrow the range of gestures
that are appropriate for the shape of the object to those
that are consistent with the general semantics of the
object, preventing inappropriate gesiires This would be
analogous to the claim that resicual operation of the
phonological route in phonological alexics “edits out”
any potential semantic eqrors that might arise from the
impaired operation of the semantic route (Newcombe &
Marshall, 1980) However, there is yet another abjection
that can be raised to this proposal (see Shallice, 1988b)
If gesturing is bhased on the same semantic representation
that supports naming, then there are semantic and per-
severative errors thar would support 4 different mime
from the one produced On these trials, could the patient
reatly rely on the semantic representation to select ap-
propriately berween different gestures thatare supported
by the structural descriptions?

Perhaps gesturing in optic aphasia can be based on
the intact generation of functional portions of an object’s
semantics (see Farah & McClelland, 1991; Sacchett &
Humphreys, 1992; Warrington & Shallice, 1984) even
though the generation of other portions of semantics
that normally support naming is impaired Again, this
would invelve accepting some amount of specialization
within semantics A simulation based on this proposal
would involve naming and gesturing (0 visual and non-
visual stimuli It would constitute a complete simufation
of optic aphasia consistent with the current account of
the error patern in object naming However, it remains
10 be developed

APPENDIX A: BACKPROPAGATION
THROUGH TIME

This appendix gives the mathematical details of the
“Hackpropagation througl time” learning procedure (Ru-
melhart et ai, 1986, Williams & Peng, 1990)

The Units

Let &' be the total input of unit j aL ume £, and let 3"

be its output Then if wy is the weight on the connection
from unit 7 to unit /, then

A0 =B g (3)
I
(7 (ry .
W=y )= i {4)
1+ eV
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The Forward Pass

The network runs for a fixed number of iterations fias
The input is presented 10 the network by sewing p)” for
each input unit f and every £ as specified by the input
™ of the remaining units are initialized to some con-
grant value (02 in our simulations) Then for 7 = 1 10
faas, UNIE iNputs and outputs are calculated according 1o
Eqs (3) and (4), respectively.

The Error Function

Iq addition 1o the states of the input units, the environ-
ment specifies the desired states o' of each output unit

j for some tdmes ? (typically the last three iterations in

our simulatiens) The ervor FO for tme ¢, called the
cross-entropy (Hinton, 1989), is defined over output Lnits
j 1o be

Bl =S [ log(f) + (1 = dM log =31 )

k;
where the towl error £ = ZE"

The Backward Pass

The backward pass calculates the derivatives of the error
with respect to the states and weights in the network
The error derivative of a unit’s state has twWo COMpOonents:
the derivative of the “exterpal” error function (which is
0 for nonourput units and for fterations without desired
states) and the derivative of the error caused by the unit's
influence on other units The eror derivatives for
weights have two corresponding terms Specifically, for
[ = faw 10 1, the derivatives of the error at time ¢ with
respect to the states and weights of each unit are caleu-
lated according to the following equations:

aE" 3 1 - df,-“ 5{(&2

af? -yt
aE _ Q" B_].’}” E).\_':;” 3 E aEt ?(”{1 _ ,{“.)u
PYE o oy P ) i i ity
ar g™ 3.5.’5'” {-}:\-_'('.rj QE™ a‘]ffrwl; a._\jzmly

aw, ol " awy axy !

au_)‘j
8E(r) )
- c‘]_;:m-."ff“(l —_13}”11,5_: i)
A
e |
e s A=y — (= 1hy, r=2)
Eh,;" b }j ( }J ),‘ ;

" = (6)
dwy T Gy

Weight Updating

The procedure defined by Eq (6) is applied o each
example in turn, accumuiating error derivatives for the
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weights. At this poing, each weight in the network is
changed according 1o:

aE
il l.-’g,'

lor} -
Aui = —e( ) + adwly 7
where e determines the overall learning rate (0001 in
our simulations), o is a momentum term that causes
weight changes to be similar 1o previous weight changes

(095 in our simulations), and 7 is the number of

“sweeps” through the examples so far

Training Criterion

Because the sigmoid unit function asymptores at 0 and
1, units cannot actuaily achieve these values in principle
Accordingly, for tasks with binarv outpuis (as are ours),
uaining is halted when, for every example, the difference
berween the actual and desired state of each ourput unit
is smaller than some tolerance (01 in our simulations)

APPENDIX B: REPRESENTATIONS

This appendix provides demils on the input and output
representations used in the simulations described in this
paper

Visual Representations of Objects

Visual input for objects is represented over 44 visual
features, as summarized in Table 4 The fArst 25 features
are devoted 10 representing the shape of the object in
terms of up 1o three "components,” one of which is
designated as the main component These might be
thought of as loosely corresponding to Biederman’s
(1987) "geons " The shape of each component is en-
coded over five units, as shown in Table 6 The position
and size of the second and third components relative to
the main component are described in terms of two and
three additional units, respectively (see Table 7) The
remaining 19 of the 44 feawures describe more general
visual characteristics of the object, as well as color, ex-
ture, and absolute size information (see Table 8)

Table 9 describes the visual representations of each of

the 40 abjects in terms of the codes listed in the tables
for values of each type of information Figure 10 shows
the actual assignment of each of the 44 visual features to
cach object

Semantic Representations of Objects

The semantics of each of the 40 objects is represented
in terms of 1 set of semantic features, listed in Table 10
Figure 11 shows the assignment of semantic features to
each of the 40 objects

Table 6. The Encoding Used to Describe the Visual Shape of
Each of the Three (Possible) Components of Each Object”

Component Shape

Features Code Description
O T A cy Cylinder
v 110 cvh Cylinder—holtow
111 0 1 cys Cylinder—short
11 01 1 cvi Cylinder—long
11 ¢ 10 t Top
11 00 1 Ip Legs/prongs
11 00 0 slp Single leg/prong
1 01 11 sph Sphere
1 61 01 Lp Taper-to-point
101 00 cu Curve
1090 11 hsp Haif-sphere
1 00 01 pe Plane—circular
10060 0 r Rim
611 11 bt Box-—rectangular
¢ 1110 PP Parallel planes
011 0 1 bt Box--~thin
01 100 bl Box—long
01 011 ps Plane—square
o1 010 pr Plane—reciangle
01001 lf Long/flat
01 0600 Ift Long/flavthin
G o1 10 liq Liguid
¢ 00901 ho Hole
00 0 00 (No second or third

component)

“The meanings of the features are roughiy (1) contains curves, (2) sides
contsin paralle! lines (3) sizes along all three dimensions of the same
order of mugnitude, (4) more equal in dimensions than shapes with
similar values for preceding features, and (3) more regular than shapes
with similar values for preceding femures, The “code”™ leners will be
used to describe the assignment of visual featsres 1o objects
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Table 7. The Encoding of the Position and Size of the Table 8. The Coding for General Visua Characteristics,
second and Third Components Relative 10 the Main Color, Texture, and Absolute Size
Component

General Characteristics”

Relatire Position

Code Description
Features Code Description T ; ;
v Direction of main component—vertical
i 1 ee Extension at end N . .
dh Direction of main component—horizontal
1 0 em Extension m middle .
54 Screw/sawtooth
0 i ae Anachment at end . il
ifl Internal flexibility berween componenis
0 0 am Attachment at middie .
con Concave
¢ 4] (No second or third component) -
sh Sharp
dis Distonable
Kelative Size
int Interior visible
Featrres Code Description
dr Rectangleshandle apparent on surface
111 1 Longer
1 1 0 e Equal Color
] H 5 Smaller . - ‘ -
! mal Featires Code Description
0 0 1 ms Much smalier (1/4 10 172 ]
¢ ) 11 1 va Various
¢ 00 vms Very much smaller
’ 110 bra Brown
000 No second or third component . o
{ P ) 1 ¢ 1 si Silver
i 00 ar Gray
a Mol aft Poas Pre - & ; Trive 2 Tl .
016 from [1:]6_ MLI)‘or_muil Iu} Program in ‘C,ogm[‘n_c. Neurosci 0 0 1 wh White
ence, and Grant ASC-9109215 from the Nationai Science Foun-
dation 0 ¢ 0 ir Transparent
Reprint requests should be sent 10 Dr David C Plaut, Depart-
ment of Psychology, Carnegie Melton University, Piusburgh, PA Totur
! ) } : exture
15213-38%0
Features Code Description
Notes 10 5m Smoath
1 Only one lefi hemisphere agnosic patient i$ known 1o us 0 1 ro Rough
who makes predominantly visual errors, patient RV of Beauvois . ]
and Saillant (1985) As he was 75 when first tested, an additional 00 ¢ Either

apperceptive component is plausible

2 Qur analysis does not, however, require us 10 assume &
unitary semutics

3 In simulations reported by Plaut {3991), a nenwork with a

Absolite Size

somewhat different architecture produced equivalent results as Features Code Description
those described in this paper 1 00 0 0 53 Less than 3 in
4 See Figure 6 of Hinton and Shatlice (1991) for a relmed

empirical phenomena: semantic errors tend © have a smaller 11 0 00 §3-6i 3woin

gap ‘qu a given ijro,\ls_mu"y than _do vmu‘f! Qrrors 11100 312 31012 in

5 This proporiion is much higher than the average correct

performance for subsequently presented objects after clean-up 01 100 §6—12i 6o 12 in
lesions (39 2%) because the prime is presented with alt of the

short-term weights set to zero 01110 56i-2f 6in w2 Mt

G Th'e explllcu error ruie of the patient @9/")9} _fslmuch hxgl}er 6c0 1 10 $1-2f lw2ft

than in the simulation after V—1(0.5) lestons (3 3% ), suggesting

that either the patient used a lower response criterion or that 00 0 1 3 §2-6f 2106h
naming involved random guessing 1 either case this would

inflate the rate of “other” errors 00001 §>0f Greater than 6 fi

*Fach “general” characteristic is represented by a separnte feature
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Table 9. A Description of the Visual Representation of Each Object in Terms of the Codes Used in Previous Tables to Describe
Values of Each Type of Visual Information

Assigrnmnent of Visual Features to Objects

Object Main Secorid Third General Calor Texture Size
cufr cyh pc ae e Cut am 3 dv con Vit sm §3-61
spoon If hsp ee ms con si s §3-12i
prit cyh ps ae e H ae ] v con si sm 56i-2f
Jork If Ip ee ms sh si sm 53-12
knife If iz} ce e sh si sm 53-12i
bawl hsp dv con Vi sm 56i-2f
can cy dv va Sm §3-0i
plate ne r ee ms dh wh sm 56-12i
clish pC r ae ms di con vat 5m $6-12i
glass cyh pe ae e dv con tr sm $3-6i
pen cyl tap ce Vs L ee ms i va sm $3—0i
file pr pr ae e ift vil el sl-2f
paper pr dis wh sm $0-12i
book pr pr ae e iff int va el 56-12i
sk ps he am Vs bl o $3-Gi
teipe cys ho arm 5 brn sm 53-6i
st ps dis vil s §<5i
board pr vid 5 s1-2f
glue I tap ee vms vit S §<3i
ink cyh t ee € ligy am 5 con int v sm §<3i
chair ps Ip ae e ps ae e dh brn e §2-6f
tabie pr Ip ae 5 dh brn 5m 52-6f
bedd bt Ip ae vms pe ae ms dh va Io 5>6f
sofu br pr Am e pp ae ] dh v ro §2-6f
stoof pc Ip ae } dh brn sm 51-2f
rug pc dh dis vil Y] §>06f
radio b dh vit sm 56121
tele pr br Am @ dh gr sm s1-2f
divan b dh va 0 52-6f
clesh pr p ae 5 dh dr brn sm 52-6f
seate Ift cil ss sh 5i sm si-2f
neitl vl tap ee ms pc ee | sh ar sm §3-6i
plane bl cu am ms Ift am vIns sh ar sm 56i-2f
ruler If brn sm 51-2f
scremw wp pe ce 1 58 sh gr o 5<03i
atwf oyl L ee € sph ce ms sh gr 5 53—-6i
axe be tap ee s eyl am | sh ar 5m si-2f
boit ey cys ce I s8 gr o S<3i
niet oys ho am 5 54 gr ro §<31
vise P oy am e dv ifl int va Sm s1-2f
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Figure 10. Assignment of vis-
ual features 1o objecs
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Table 10. The Semantic Peatures Used to Describe Objews

Semantic Featires

Visual Characteristics

Merede of

Spectfic Function

(AN ¢}

-

26

28

Main component vertical
Main component horizontal
Screw/sawlooth

tnternal Hexibilisy
Concave

Sharp

Distortable

Interior visible
Recangleshandle appurent
Color (visual coding)
Color (visual coding)
Color (visual coding)

Smooth

i Rough

Size less than 6 in
Size Gin o 2 fi

Size greater than 2 fi
Muain-shape 1D
Main-shape 2D
Main-shape 3D
Rectangular cross section
Circular cross section
Has legs

Has other appendage
Simple

Complex

Liquid

Has hole

Consistency

30

Hurd

Soft

Metal

Pottery

3 Wood

i Cloth

Glass
Plastic
Paper

Other substance

Where Fourd

Home

Office

Owdoors
Kirchen/dining room

Living roonysuudy

i Bedroom

Work-room
On grouad
On surface

Otherwise supported

General Function

5

N

5

Cooking
Eating
Drinking
Leisure

Rest

i Carpentry

Waork-office
Work-home

Aesthetic

58
59
60
61

63
o
65
66

Chopping/cutting

Holding in place

Writing

Information-holding
Measuring

Reading

Sticking

Assigning-value

Holding food/drink

sitting

Lying

Use-with-liquid
Use-withi-salid

Sleeping

For comfort

For listening

For viewing

Manipulating another artifact
Is manipulated by another artifuct
Functioning with another object
Functioning alone

Container

General Action

Use with one arm
Lise with nwo arms
Use with hand (licle arm movement)

Use involves mouth

i Euasily breakable

Placed in lap/held iy front of body

Characteristic action of whole body
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